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ABSTRACT

This study is concerned with the elastic stability analysis of
simply supported tapered members loaded by end moments. The governing
differential equations are derived and a numerical solution technique is
described. A computer program was developed to perform the analysis and
solutions are presented for both singly - and doubly - symmetrical
tapered and prismatic members. The results are compared to closed-form
and finite difference solutions available in the literature. The finite
element method was used to compare the results for tapered and prismatic
members. Agreement of solutions shows the proposed analysis technique
to be accurate in determining the buc¢kling loads of tapered elastic
members.

Using solutions generated with this program, and a multiple
linear regression technique, a simplified precedure for the calculation
of critical buckling loads is presented. This procedure is statistically
verified and, within the noted limitations, will be accurate to *8% for

tapered beams in single curvature and + 127 for double curvature.
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RIGID FRAME STUDIES

CHAPTER I

INTRODUCTION

1.1 General

Prismatic structural steel beams with H-shaped cross-sections
are commonly used in conventionally designed frames. The cross-section
is usually selécted to resist a maximum stress at a single location
along the member, although the stresses elsewhere may be considerably
lower. Noting such inherent inefficiency, Aminikian (1), in 1952,
suggested the use of tapered beams in which the web and/or flange dimen-
sions are varied along a member to provide only the strength required at
any location. Following his suggestion, much experimental and theoreti-
cal work has been reported on, resulting in the adoption of a recommended
design procedure for doubly symmetric web-tapered or '"wedge" beams into
the American Institute of Steel Construction Specification for the
Design, Fabrication, and Erection of Structural Steel for Buildings (2)
(henceforth referred to as the AISC Specification). This procedure,

included as Supplement No. 3, was adopted in 1974, and represents the



first time provisions for the design of taperéd members were included
in North American specifications. Appendix D of the 1979 AISC Speci-
fication covers the design of doubly symmetric web~tapered members
satisfying certain requirements (3).

The current use of high strength steels, together with the
emphasis placed on material optimization, results in flexural members
with high flange stresses. These higher stresses result in an increased
potential for failure by elastic lateral-torsional buckling. For wedge
beams, with higher average flange stresses, elastic lateral-torsional
buckling becomes an increasingly likely failure mode. Since design
equations including inelastic effects are traditionally based on modi-
fications of equations derived for elastic behavior, an understanding
of elastic buckling is first necessary to develop a complete design
procedures.

The purpose of this study is to develop a rational, simplified
procedure for the design of tapered beams with doubly or singly symmetri-
cal cross-sections where lateral torsional stability is the assumed
failure mode. A literature survey of previous investigations is first
presented. Papers and texts giving historical perspective of stability
in general and lateral torsional buckling in particular are cited. The
governing differential equations for beam stability are derived and a
solution technique presented. A design methodology for simply supported
flexural members which uses basic equations from classical stability
analysis but modified to account for taper and varying end moments is
proposed. Consideration is extended to sections with only one plane of

symmetry with respect to the axis of bending.



1.2 Historical Perspective and Recent Literature

1.2.1 Elastic Instability of Prismatic Beams

The problem of elastic instability was first discussed in con-
junction with lateral buckling of compression members. In the 18th
Century, Euler presented a theoretical treatment of the elastic stabi-
lity of concentrically loaded compression members and van Musschenbrock
performed several experiments to determine the elastic capacity of
columns with solid rectangular cross-sections (discussed in Ref. 4).
At that time, the principal structural materials were wood and stone
which exhibit low strength and unpredictable behavior, resulting in the
use of stocky members for which yielding or bearing failure occurs
before elastic instability. Thus, the theories developed in the 18th
century found little application until the introduction of %rought iron
and steel in the 19th Century. These higher strength materials allowed
the use of more slender members to resist both concentric compressive
and flexural loadings and interest in buckling increased. In the late
19th and early 20th Centuries much experimental and theoretical work
was conducted, resulting in the currently accepted procedures for column
stability consideration. A complete account of the development of
column stability analysis is found in the texts by Bleich (5),
Timoshenko (6), Timoshenko and Gere (7), Galambos (8) and in the Structural

Stability Research Council's Guide to Stability Design Criteria for Metal

Structures (9).
The combined mode of failure, lateral-torsional buckling was
first considered in 1899 by Prandtl (9). In this failure mode, a cri-

tical magnitude of the applied loading is reached when a bifurcation of



the equilibrium is possible and out-of-plane lateral deflections occur
simultaneously with twist about the deflected shear center. Torsional
buckling, as a distinct mode of failure of compression members was
investigated by Wagner (10) in 1929. Wagner explained that initial
deflections cause axial compressive stresses to exert a disturbing
torque. This explanation has been referred to as the Wagner effect (21)
and is discussed in detail in Chapter II.

The analysis of beam failure by lateral-torsional buckling has
historically been made with one of three approaches. Timoshenko (11)
derived the pertinent differential equations describing the instability
of thin walled members by considering the equilibrium of a finite por-
tion of the buckled beam. This procedure leads to three simultaneous
equations, two of which are second order and one third order. These
equations are coupled for the general case of unspecified symmetry of
the cross—section. Vlasov (12) has derived similar equations by con-
sidering the equilibrium of an infinitesimally small element of the
buckled beam. This procedure leads to three fourth order differential
equations, again coupled for the unsymmetrical case and is more general
than the equations derived by Timoshenko in that the statical boundary
conditions are not used in the derivation. F. Bleich and H. Bleich (13)
derived the differential equations from the theorem of stationary
potential energy and established the generality of the equations provided
the axis defined by the cross-section shear center is chosen as the
reference coordinate for displacements (5). These differential equations
can only be uncoupled if symmetry of the cross-section and location of

the applied load is specified.



Each of these approaches involve the assumption that while
plane cross-sections warp, their geometric shape does not change during
buckling. Additional simplification is possible when it is assumed that
shear strains have no effect on the deformations. The incorporation of
solutions of these differential equations into the design process is

discussed in Section 1.2.3.

1.2.2 Elastic Stability of Tapered Beams

Research into the elastic instability of tapered beams has only
recently been conducted. Lee (11) in 1956 derived equations for non~
uniform torsion of tapered I-beams, ignoring the effect of web defor-
mation. By specifying double symmetry of the cross—-section Lee found
that the equations become uncoupled. Lee noted that the beam acts as
two flanges in bending and torsion, and that the web is ineffective in
resistance to out-of-plane bending. He also demonstrated experimentally
that the term concerned with torsionaily induced shear stresses remains
unchanged in tapered beams from that derived by Timoshenko for prismatic
beams.

Culver and Preg (15,16) derived differential equations for
tapered beam stability using the Vlasov's approach (12), and used the
finite difference method to evaluate critical moments for beams of
varying web tapers, support conditions, and end moments.

Lee, Morrell and Ketter (17) investigated the stability of
doubly symmetric tapered members under varying end moments using a
minimum potential energy approach. Only members linearly tapered in
depth were considered. The strain energy functional was derived from

potential energy considerations, and the Rayleigh-Ritz Method was



employed for the solution. Chi (18) performed a similar study but
included singly symmetrical tapered members. In both of these studies,
polynomial displacement functions were chosen for use in an approximate
solution. As is discussed in Chapter II, the functional derived in the
above studies does not include all natural boundary conditions required
by the statics of the problem, and it appears that the conclusions drawn
in these two studies are valid only for the case of a uniform moment.
Trahair and his research team (19,20,21) have investigated the
lateral stability of stepped and uniformly tapered, singly and doubly
symmetric beams. In Ref. 21, Trahair and Kitipornchai note that for an
arbitrary tapering of any cross-section dimension, the loci of shear
center and centroid locations are inclined toward each other and the
out-of-plane bending action and the torsion action are interdependent.
Trahair and Kitipornchai derived a set of differential equations which
are valid for tapered beams with at least one plane of symmetry in the
cross-section. These equations were solved by the finite integral
method for the case of a beam with flange width taper and the solutions
were verified experimentally. The approach of Trahair and Kitipornchai

will be used in deriving the differential equations used in this study.

1.2.3 Suggested Design Procedures

An exact solution of the governing differential equations for
lateral-torsional ‘buckling of beams is only available for prismatic
beams under uniform moment. In 1943, Winter (22) presented approximate
equations for the calculation of critical moments of singly symmetrical
I-beams, derived using Rayleigh's energy method. de Vries (23) presented

several empirical equations to deal with cases of transverse loadings



and Hall (24) in a discussion of de Vries' article recommended that the
case of uniform moment be used as a basic case for further simplifications.
Salvadori (25,26), using an approach similar to that of Lee (17) and

Chi (185 but with trigonometric series as displacement functions, calcu-
lated the critical buckling moment for cases of varying end moments
applied to doubly symmetric prismatic beams. The results and recommen-
dations of Salvadori (26) have been incorporated into the AISC Specifi-
cation as the multiplying factor, Cp. This factor, a function of end
moment magnitudes, is applied to the critical moment as calculated from
an equation which represents the closed form solution for the case of
uniform moment along the member.

Clark and Hill (27) obtained solutions in a similar manner for
both singly and doubly symmetrical beams subjected to a variety of
support and loading conditions. They obtained separate modifying
factors, for use with the closed form solution mentioned previously.
This procedure allows the designer to include effects of unequal end
moments, location of transverse load with respect to the centroidal
axis, load distribution and end restraint. A summary of their findings
is included in the Structural Stability Research Council Guide (9).

Morrell and Lee (28) used the results presented in a previous
paper (17) to develop allowable stress formulas for the proportioning
of doubly symmetrical web tapered members. Their approach was to modify
existing AISC design equations for prismatic members by adjusting the
length of a prismatic beam having the same cross-section dimensions as
the smaller end of the tapered member. Their goal was to invent a

prismatic beam with a critical stress equal to the critical stress of



the tapered beam. This approach has been adopted in AppendixD of the
current AISC Specification (3).

The simplicity of the use of modifying factors, such as sug-
gested by Salvadori, as compared to the Lee and Morrell approach, is
immediately appreciated. It is the aim of this study to determine
analogous modifying faetors to permit a simplified design procedure

for tapered beams under moment gradient.

1.3 Scope of Study

The design rules provided in the AISC specification are limited
to tapered members with at least one axis of symmetry perpendicular to
the plane of bending and the flanges must be of equal and constant area.
Because local buckling considerations may require greater area in the
compression flange than is needed in the tension flange, economy in
tapered members may frequently be achieved through the use of different
flange sizes. For this reason, this study is undertaken to extend the
basic theory for the stability analysis of tapered doubly symmetrical
beams to singly symmetric tapered beams.

Current AISC design proceedings for the design of tapered beams
incorporate the use of length modification factors in conventional AISC
prismatic member design formulas. Two equations are required for these
factors as thin, deep sections are distinguished from thick, shallow
sections in the calculation of allowable stresses. These length
modification factors introduce design complication, and make it diffi-
cult for the designer to develop an appreciation of the effect of

various parameters on buckling strength.



The study described here is an investigation of the lateral-
torsional stability of tapered sections under stress gradients induced
by unequal applied end moments. Cross-sections included in this study
are restricted to built-up members composed of relatively thin plates
and with one axis of symmetry in the plane of bending. The governing
differential equations are derived using the method of Trahair and
Kitipornchai (21) and solved using a Galerkin series approximation.
The critical buckling solutions obtained are verified using a finite
element procedure. Individual modifying coefficients to account for
taper and moment gradient are then developed from these results using
a multiple linear regression technique. The work of Galambos (8),
Vlasov (12), Trahair and Kitipornchai (21), and Trahair (29) are
freely consulted in the derivation and solution of the governing

differential equations.



CHAPTER II

THEORETICAL ANALYSIS

2.1 Differential Equations of Bending and Torsion

Only web-tapered beams with uniform web thickness and flanges
of constant dimensions are included in this study. The tapering is
assumed to be linear and only simply supported beams loaded by end
moments are considered. Reactions, induced in the cases of unequal end
moments, are assumed to act through the shear center.

Defining a centroidal coordinate system as shown in Figure 2.1,
where the z-axis is the locus of centroids and the y-axis is the plane
of symmetry, all cross-section properties are then functions of the dis-
tance z from the origin of the coordinate system. For the linearly
tapered member shown in Figure 2.2, the depth of any distance z from
the left end can be expressed as:

dz = dL + oz (2.1)

where o is the taper given by

dg = 4

T (2.2)

Qo=

where dR and dL are the depths at the left and right ends of the member
and £ is the member length. Thus o is positive if the small end is
located at the origin and negative if the large end is located at the

origin.
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Fig 2.1 Centroidal Coordinate System
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Fig. 2.2 Tapered Beam Geometry
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The following assumptions are made:

1) the material behaves elastically;

2) there are no residual stresses;

3) the member is initially straight and untwisted;

4) the moment of inertia about the x-axis is significantly
larger than that about the y-axis;

5) the external moments are applied about the x-axis of the
member;

6) the member has a taper less than 100;

7) plane cross-sections do not change in geometric shape during
buckling;

8) shear strains have no effect on the deformations and may be
disregarded.

Assumption 4 was made by Salvadori (25) and allows deflections in the
plane of the web to be neglected when considering lateral stability.
Assumption 6 is made in conjunction with the findings of Boley (30). By
restricting beams to a maximum of 100 taper (1 in 12 slope for each
flange), less than a 27 error may be expected when using standard flex-
ural formulas for the calculation of normal stresses. Assumptions 7 and
8 are consistant with the assumptions of Vlasov (12). By using these
assumptions, it is possible to separate the combined bending and torsion

of a member into two independent bending actionms.

2.1.1 Major Axis Bending

In accordance with assumption 6, the differential equation for
major axis bending of nonprismatic beams is assumed to be of the same
form as for a uniform beam (14), i.e.,

MX = —EIx(z)v" (2.3)

12



where Ix(z) is the major axis moment of inertia which varies along the
beam and v is the y-axis or in-plane deflection. Here, and elsewhere
in this paper, the primes refer to differentiation with respect to z.
This equation is independent of the minor axis (out-of-plane) deflec-

tion, u, and the angle of twist, ¢.

2.1.2 Minor Axis Bending

In general, out-of-plane displacement will be accompanied with
rotation, as shown in Figure 2.3. With the subscripts t and b referring
to the top and bottom flanges and assuming no distortion of the cross-
section, the displacements of the flanges are related to u and ¢ as

u =u + at¢ (2.4a)

u =u- ab¢ (2.4b)

where a, and a, are the distances from the shear center to the respec-

tive flanges and are given by:

I

a_ = iﬁh dZ (2.5a)
y
I

a = Ift a (2.5b)
y

In these equations, Ifb and Ift are the moments of inertia of each

flange about the y axis and dz is the depth at any arbitrary distance
from the origin, as specified in Eq. 2.1.
Neglecting the effect of the web on warping, the flange bend-

ing moments are related to flange curvatures as:

2 d’(a)

d u
M = EILu} = EI. [~ + 51 (2.6a)
dz dz

13
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Fig. 2.3 Out-of-Plane Deflection Coupled with Twisting

Shear
" T == Center Axis

Fig. 2.4 "~ Relationship of Flange Shears and Flange Moments
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2
a2y d (a9

= " = —
be EIfbub EIfb[ 5 5 ] (2.6b)
dz dz
and the total minor axis bending moment is
M =M, +M (2.7)

y ft fb
Substituting Eqs. 2.5 and 2.6 into Eq. 2.7, the minor axis bending

moment becomes

M = E(

" - LU
. I, + I )u" +E@ I - aT,)e"+

Yo' + E(alI., - a'I_. )¢ (2.8)

v _ v
2E(aIe - &l lee ~ 2plep

b

Neglecting the contribution of the web to the y-axis moment of inertia,

Iy can be written as

Iy = I, + I, (2.9

Neglecting second order derivatives of "a'" as small, and noting that

I 1.1 .
- [P _ Tft fb
atIft B [I (dL + O‘Z)]Ift =1 (dL + az) (2.10a)
y y
I 11T
= [IEt _ “ft fb
a,ley, = [Iy (d + az)]I; = -—i;——~(dL +az) (2.10b)

the second term of equation 2.8 is equal to zero and the equation may
be rewritten as

M_=EI u" + EI ¢’ 2.11
v y vx? (2.11)

with the additional beam property, defined as

wa’
= ol — At
wa atIft abet (2.12)
2.1.3 Torsion
In general, the total torque, TSC, acting about the shear

center axis may be considered to be comprised of three components (21),

T =T +T
sV

e + TW (2.13)

f

15



where TSv is the Saint Venant torque,'Tf is the flange shear or warping
torque, and TW is the torque due to the Wagner effect. It has been
demonstrated (14, 31) that the St. Venant component is the same for
tapered beams as it is for prismatic members:

Tsv = GJI(z)¢' (2.14)
where GJ is the torsional rigidity of the section at a distance z, from
the origin and ¢ is the angle of twist at a section. The second term in
Eq. 2.13 results from the out-~of-plane displacements of the flanges

which induce flange shears and with reference to Fig. 2.4, these flange

shears are expressed as:

-dM
I 4
Vft iz (2.15a)
-dM
_ b
Vfb i (2.15b)

Since the flange moments are inclined at angles to the shear center axis

as shown in Fig. 2.5, the warping component of torsion is expressed as:

dat dab
Te = @ Ve —aVe) + Mg 307 - My 5o (2.16)
or, on substitution of Eq. 2.15,
dM dM da da
_ ft fb t _ b
Te="3 % "% 3 "M Y@ (2.17)
which can be rewritten as:
- -d _ ' o
Te = 3z CMer — M) + 2(aMe - ap Mp) (2.18)

Substituting Egqs. 2.5 and 2.6 into the first term of Eq., 2.18 yields

16



T dz
] — — —o Shear Center
- = = T Axis
z
day

Fig. 2.5 1Inclination of Flange Moments

(L Shear Center

X Centroid

Fig. 2.6 Displacement and Rotation of a Mono-Symmetric Cross Section
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LI I_1I
~d _ _ —Ed,. fb ft " o_ ft fb "
az @Mee ~ M) = G e T 9,u *
y y
I_.d 2 I_d 2
fb 'z d (a.6) + ft 'z d (a, )] (2.19)
I 2%t I 2'°b
y dz y dz _

Noting that the u" terms cancel, expanding and neglecting second order

derivatives of "a'" as small, this term becomes

:_El_ - - -Ed 2 " 2 LU
3z @M M) = g la T 8" A T 6

L 1 ¥
2(atIftat + abebab)¢ ] (2.20)

A similar sequence of substitutions into the second term of equation
2.18 results in the following equation for the flange warping component

of torsionm,

- :!_3_ " :ﬁi_ 9 " "
Tf = dz(Equb ) dz(EIww¢ ) + EI xu -+ EIww¢ +

v

EI¢¢ (2.21)

where the additional beam properties are defined as

_ 2 2
IW = atIft + abeb (2.22a)
= v A
Iww 2(atIftat + ablfbab) (2.22b)
= o P |
I atIft abeb (2.22¢)
I, = 40’1, + @)H’1. ] (2.224)
() t ft b fb -

When a monosymmetric thin-walled beam loaded in its plane of
symmetry is twisted, as in the case of lateral torsional buckling,

normal stresses present will exert an additional disturbing torque.

18



This occurs because the shear center axis, or center of twist, does not
coincide with the centroidal axis and any twisting which occurs causes
the centroidal axis to deflect, as shown in Figure 2,6. As a result,
portions of the section are further strained by the small additional
bending while other parts experience unloadiﬁg. In singly symmetric
sections, these effects will cancel out. In addition, the longitudinal
flange force vectors are rotated such that components transverse to the
shear center axis are developed as shown in Figure 2.7. These compo-
nents produce a net torque on the beam.

The effect of this disturbing torque was first explained by
Wagner (7) and can be thought of as reducing the torsional stiffness of
compression elements and increasing the torsional stiffness of tension
elements (21). In doubly symmetric beams without residual stresses, the
effect of these tension and compression flange torques cancel. In a
singly symmetric beam, the small flange is the farther from the shear
center and the stresses and torque resulting from the small flange force
are greater. Thus, the state of stress in the small flange predominates
in the Wagner effect, When the small flange is in tension the torsional
stiffness is increased; when the small flange is in compression the
torsional stiffness is reduced.

For tapered, singly symmetric beams, the distance p, Fig. 2.8,
from any fiber to the shear center varies along the beam. When the
cross section twists and warps, any longitudinal stresses develop compo-
nents transverse to the shear center line and, in general, these trans-

verse force components are
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Shear Center —F
Axis

Fig. 2.7b The Wagner Effect - Shear Center Twist Producing a
Disturbing Torque as Flange Force Vectors Are Rotated
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dF = £ ilé—‘;—"i)—dA | (2.23)

The resulting torque is then

T =fde =fpf d#‘z—(pqs)dA (2.24)
A A
where
Mxy Mx
f =% T——-t-fz—-i Residual Stresses (2.25)
X y

Since residual stresses are ignored in this analysis and the cross-
section is assumed to be symmetric with respect to the y-axis so that
the effects of the minor axis bending moments cancel, the torsion equa-

tion may be rewritten as

My
_ x° d
w J T dx(pd))dA (2.26)
A Tx
or
= ' g ’
TW Mx8x¢ + MXBX¢ (2.27)

where the additional section properties are defined as

™
L]

-i];—fpzydA (2.28a)
X YA

Wi
l

-1 f de
. prdz ydA (2.28b)
xJA

The differential equation for torsion with respect to the shear center

is then
\ .__(j_ ‘ " _Q_ H - " "
TSC = GJ(z)¢" - dz(EIW(z)(b ) - dz(EIww(z)¢ ) Ewa(z)u + EIW¢(2)¢ +
EI¢(2)¢' + MX(Z)BX(Z)¢' + Mx(z)Bx(z)¢ (2.29)

For the mono-symmetric cross-section, shown in Fig. 2.9, dis-

tances from points on the flanges to the shear center are
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dz Fiber after twist

Fig. 2.8 Displacement of Longitudinal Fiber
During Twisting (after Trahair, (21))
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Fig. 2.10 Applied Major Axis Loading Condition
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_Im

a, = E——(dL + az + e) (2,30a)
Yy
Ift

a, = E~—(dL + oz + e) (2.30b)

y

where e is the distance from the channel web line element to the channel

shear center along the axis of symmetry. Other section properties are

I..I
_ 2 “fb ft
Iw = (dL + az + e) —5 (2.31)
y
2T I
_ fb ft
Iww = ——Ef———~a(dL + oz + e) (2.32)
y
I_.1
I = 402 b fC (2.33)
P I
y
wa =0 (2.34)

Thus, the differential equation for torsion about the shear center is

]
]

ce = CI@O = SEL (4" - L(EL(2)4) + BL (2)6" + EL, (2)9" +

MB_(2)¢' + Mxéx(z)cp (2.35)

2.1.4 External Moments and Torques

Equations 2.3, 2.11 and 2.35 are general equations valid for
any support conditions or loadings. The external moments and torqﬁes
are now evaluated for the specific case of a simply supported tapered
beam loaded only by end moments.

Using the sign convention for the applied moments shown in Fig.

2,10, the moment at any section z from the origin is

M (z) =M (1 - 1+ y)i—) (2.36)
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where Yy is the end moment ratio

M
M

Referring to Fig. 2.11, and assuming that ¢ is small, so that sin¢ may

(2.37)

be approximated as ¢, the y-axis moment can be written as
o M (2} = - _ z
M (2) = M ()6 = M4 - (v + D) (2.38)

With reference to Fig. 2.12, it can be seen that external torque is
supplied from two sorces: (1) The reaction, indicated in Fig. 2.10,
produces a torsional component as it acts through the out-of-plane dis-
placement, u. (2) This displacement also generates a torsional compo-
nent from the major axis bending. Thus, the total external torque,
again assuming small angles so that cosu' may be approximated as 1.0,
may be written as

T=M - @+ +u D (2.39)

and if Iy is assumed constant for a beam tapered in depth only, the
complete equations become:
In-plane Bending

M (L= 1+ 7)) = -EL (2)v" (2.40)
Out of Plane Bending

Mol - L+ D) = ET u" (2.41)

Torsion

Mu' - @+ 0D M ETDu = 638" - @ ()6 - S ()"

+ EL(2)9" + EL (2)¢" + M (1 - (1 +1)%) I8, (2)¢' + gx(z)¢]_(2.42)
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y

Fig. 2.11 Applied Minor Axis Moment

Fig. 2.12 External Applied Torque (plan view)
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2.2 Solution of the Differential Equations

Taking two derivatives of Egqs. 2.40 and 2.41, and one deriva-

tive of Eq. 2.42, the corresponding fourth order differential equationms

are
d2 d2
T(EIX(Z)V") + "‘“‘E(MX) = 0 (2.43)
dz . dz

2 2

d d
—=(EI u'") + —M ¢) =0 (2.44)
d22 J dz2 x

d d d d2 d2

E;(MXU') + EE(RU) - EZ(GJ(Z)¢') + ;;E{EIW(2)¢") + ;;Q(Elww(z)¢') -

d " d [ _‘_i___ T a =
3BT, (28" = (T (2)0") - £ {tx[sxum + Bx(zm}- 0 (2.45)

with abbreviations

Mo=M(1-(1+ y)%) (2.46a)
R = & “; Y)ML (2.46b)
Noting that
2
d — " ) ] 1h]
?(MXQ)) = MX ¢ + 2MX¢) + MX¢ (2.47)
Z
v o _ A+
M= - S (2.48)
M' =0 (2.49)
X

Eq. 2.44 can be rewritten as

d2

——E{Elyu") - 2R¢" + MX¢" =0 (2.50)
dz

Noting that, with reference to Eq. 2.45,
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4 ty = MT ! "o _pat "

dz(qu ) Mku + Mku ~Ru' + qu (2.51)
R'" =0 (2.52)
é%(Ru) = R'u + Ru' = Ru’ (2.53)

the reaction terms cancel and Eq. 2.45 becomes

d ., . d2 d2 d
M = 59 + THEL @) + L @67 - (BT ()6 -
d v d [] ) —-
—dz(Elw(Z)d) ) - 1 MX{BX(ZM + BX(Z)fb } =0 (2.54)

comparing Eqs. 2.43, 2.50 and 2.54 with Preg's (15) differential equa-
tioﬁs for bending of a doubly symmetric beam with linear taper, the last
two terms in Eq. 2.54 are the only additional terms due to asymmetry of
the cross-section. It should be noted that the cross-sectiénal proper-
ties are not constant, but are functions of the coordinate z.

Equation 2.43 represents in-plane bending, and is independent
of Eqs. 2.50 and 2.54 as a consequence of excluding the effect of
in-plane pre-buckling deformations from lateral and torsional stability.
Eqs. 2.50 and 2.54 are simultaneous differential equations which are
solved to determine the critical buckling moment. The method of solu-
tion used here is the construction of the first variation of the corres-
ponding functional using the calculus of variations and employing the
method of Galerkin to find a stationary value. This approach is analo-
gous to the statement that the first variation of the total emergy of a

system must wvanish.
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The first variation of the functional associated with Egs. 2.50

and 2.54 is
d2 d
8§I(u, ) =f ———Z—(EI u")Su - 2R¢"6u + M ¢"Su + M u"S¢ - ——(CI(z)$")S¢ +
dz vy ‘ x X dz
£
d2 d2

" a ' - _Q_ " - __d__ v
(L8780 + T (BT (241088 - (BT, 2)O"NSY - GBI (2067000

d . .=
- d—Z{MX(BX(z)¢ + Bx(z)cb)}aq:} dz (2.55)

The essential boundary conditions of this problem are (32):

u=0atz=20, 2 . (2.56a)

¢ 0 at z

]
O
w»
=

(2.56b)
The natural boundary conditions of this problem are (32, 14)

u' =0at z =0, 2 (2.57a)

z¢" + 2¢" + 0 at z =0, & (2.57b)
Equation 2.57b is obtained from Lee (14) and is based in zero warping
normal stress at the end of a tapered member. Applying integration by
parts to distribute the differentiation to the variations and then using

Green's theorem, the first variation of the function is rewritten as:

SI =[{E1yu”6u" + M 8v'" - 2R$"6u + M ¢"6u + M u"6¢ + GI(2)¢'6¢" +
3
EL (2)¢"8¢" + EIW(z)d)'Gd)" + EIW(z)q)"(Sd)' + EIw(z)d)'(Sd)' +

MXBX¢'6¢' + MXBX¢6¢}rdz (2.58)

The boundary integrals produced in the use of Green's theorem can be
evaluated and all vanish. Thus the first variation of the functional is

complete.
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The Galerkin method of approximate solution requires that dis-
placement functions be chosen which satisfy the boundary conditions of
the problem and which have continuous derivatives up to one order less
than present in the equation. Satisfactory functions may, in general,
be written as

o

u(z) = mio amum(z) (2.59a)
$(z) = mio bm¢m(z) (2.59b)

Preg (15) has noted that the approximating functions may be of the form

m

um(z) = f(z)(1 + z + z2 + ...+ 2z2) (2.60)

The function f(z) is then chosen to satisfy the boundary conditions.

The displacement functions chosen must also be capable of repre-
senting the true buckled configuration. As noted by Barta (33), Chwalla
has assumed the first buckling mode to be valid for lateral buckling.
Barta has noted that his assumption of the similarity of the torsiomal
deformation and the first buckling mode gives reasonable results for a
doubly symmetric cross-section even under double curvature.

For this study, a trial coordinate function series is chosen as

u(z) = I amzm sin %f’ (2.61a)
m=0
o0

o(z) = = bmzm sin %Z— (2.61b)
m=0

Since consideration of the natural boundary conditions are included in
Eq. 2.58, these functions should be admissible, but solutions will be

verified and convergence confirmed.

29



Substituting Egqs, 2.61 into Eq. 2.58, and noting that éam and

chm are arbitrary, two simultaneous equations are obtained:

. ny_n n - v =
cSam. f{EIy(Zamum)un + Mx(Zcmcbm)un 2R(Zcm¢ m)ur} dz 0 (2.62a)
2

by [ {MX(ZamuI'];)tbn + 63 (2) (Ze_9!)8! + BI_(2)(Zc_¢")¢!" +
L

BI, (2) (Be 016" + EI_ (2) (B 8")6] + BT (2) (S $1)¢ + M 8_(Tc ¢')6!

+ MXBX(Zcmq)m)d)I'l} dz = 0 (2.62b)

or, introducing a short hand rotation, for equation 2.62a,

Za A + Zb C =0 (2.63a)
m mn m mn
where A =fEI u''u''dz (2.63b)

mn vy mn

s
C =f{M " u - 2R¢'u}dz (2.63c)
mn X'm n m n

2

and for equation 2.62b,
b [H +6G 1+ZaB =0 (2.64a)
m  mn mn m mn

where 1 = f {cuz)%q»;l + EL_ ()00 + EL_ (2) (470] +0167)

3

+ EIw(z)q)I;ld)r'} dz (2.64b)

G =j-Mx(Bx¢1;1¢r'1 + B0 01)dz (2.64c)
)

B = f M uly_dz (2.64d)
3
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For ease in numerical computation, it is advantageous to non-

dimensionalize the longitudinal coordinate.

coordinate as

o= 2

277
then

M (z) = (1 - (1+7)z)
and

u (z) = um(z)zm

u;(z) = u;(z)zm_l

u;(z) = u;(z)lm_z

Defining a non-dimensional

(2.65)

(2.66)

(2.67a)

(2.67b)

(2.67¢)

Since identical displacement functions are chosen for u and ¢, equations

similar to Egs. 2.67 can be written for ¢. Substitution of Egqs. 2.65,
2.66 and 2.67 into Egs. 2.63 and 2.64 results in
ZamAmn + meMLCmn =0 (2.68a)
where A = | —L u"u"dz (2.68b)
mn 3 mn
7, 2
A _ R & w_ 20+ ) 4l 4=
c ‘{'{(1 @+ - 282D az (2,680
and
EbmHmn + meMLGmn + ZamMLan 0 (2.69a)
EIW('z') EI w(")
q)l'q)ll + 2 (¢ll¢l + ¢ q)")

= _ GJ(z)
WhereHmn—f{ ¢¢ +
L

EI (z)
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8 - -

G =f {(l -y +1)32) [—f%l'nqﬁr'l + Bx¢m¢r'1§ dz (2.69¢c)
2 ,

B =f (1 - &+ DD u e d (2.694)
)

In matrix form,

A )
il ! m

+ ML , = (2.70)

The integrals of matrix elements Emn and gmn are identical
except for the reaction term. This term is included in the functional
as the essential boundary condition of zero out-of-plane displacement
at the beam supports. Since the coordinate functions satisfy this con-
dition, inclusion of the reaction term is redundant and may be deleted

from B . Thus
mn

e -1 "
an = Cmn = J(1 + (v + l)z(z)um¢ndz (2.71)
2

Eq. 2.70 is then simplified to

+ ML = (2.72)

fast]

0 C
jrin} mn
+ML = 0 (2.73)
0 Hmn Gmn
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The critical load for lateral torsional buckling under the specified

moment gradient is determined as the minimum eigenvalue of Eq. 2.73.

2.3 Numerical Solution Technique

For solution of equation 2.73, a computer program was written
in the Fortran IV language for the IBM System 370 computer. This pro-
gram integrates the elements of the matrices in Eq. 2.73 and determines
the eigenvalues of the characteristic equation. The required section
properties are calculated as detailed in Appendix B using line element
idealizations.

A macro-flow chart of the program is shown in Fig. 2.13 and a
complete listing is given in Appendix A. The program consists of three
main sections: The first section includes data input and echo, and the
calculation and output of pertinent section properties. Thé second sec-
tion involves the required integrations and matrix formulation. Sub-
routine DCADRE of the IBM Subroutine Library (IMSL) is employed to inte-
grate the elements of the matrices using the trapezoidal rule (18). The
third section involves the calculation of the roots of the characteris-
tic equation and utilizes the IMSL subroutine EIGZF which uses the power
method. Typical input for and output from this program are included in
Appendix A,

Input data for the program consists of cross-section dimensions,
beam length and taper, and stress ratio information. The stress ratio,

r, is defined as

(2.74)

]

33



START

Input Cross section
and Beam Geometry
Input Stress Ratio

, |
Calculate Section
Properties at Both Ends
of Member
Calculate Moment Gradient

Output Echo
and Results
of Calculatiomns

|
Initialize
Matrices

DCADRE
Matrix Element
Integration

1

EIGZF
Determine
Eigenvalues

|
Find Minimum
Eigenvalue and
Calculate Right
End Critical
Moment

Output
Results

Fig. 2.13 Macro-Flowchart for Computer Program
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where ZR'and ZL are the relative magnitudes of the stresses developed

in the flange extreme fibers. A reference end of the beam is deter-
mined as the end with the largest flange compressive fiber stress.
This end is oriented at the left and ZL assigned the value +1.0 if the
top flange is in compression, and -1.0 if the bottom flange is in com-
pression. If ZL is equal to +1.0, then the state of stress at the
right end, top flange, is described by ZR’ e.g., if the right end top

flange is in compression, Z_ is a positive number equal in magnitude

R
to the ratio of the top flange extreme fiber stresses at the beam ends
and is less than or equal to +1.0, and the right end top flange is in

tension, Z_, is a negative number equal in magnitude to the ratio of the

R
top flange extreme fiber stresses at the beam ends and is greater than
or equal to -1.0. If ZL is equal to -1.0, then the state of stress at
the right end, bottom flange is similarly described by ZR. It is seen
that a positive stress ratio corresponds to single curvature, a nega-
tive stress ratio to double curvature.

The magnitude of the critical buckling moment of a singly
symmetric beam depends on which flange is in compression. Thus the end
moment ratio, defined in Eq. 2.36, must be clearly redefined with res-
pect to a frame of reference. Considering the discussion in the pre-

vious paragraphs, the end moment ratio is redefined as

7.5
¥ = 'zRTR (2.75)
LL

where ZR and ZL are as previously defined and S is the section modulus
to the outermost fiber of the referenced flange. If the top flange is

in compression at the referenced end, then SR and SL are determined with

35



respect to the top flange extreme fiber at the right and left ends,
respectively., If the bottom flange is in compression at the referenced
end, then SR and SL are determined with respect to the bottom flange
extreme fibers.

It is noted that the end moment ratio could, alternatively, be
defined with respect to tension flange stresses and section moduli.
The critical moments calculated with either frame of reference are
identicalvfor cases of zero taper. As taper increases for a singly
symmetric beam, however, the ratio of section moduli to the top flange
at the beam ends differs increasingly from the ratio of section moduli
to the bottom flange at beam ends. Since the stability of the com-
pression flange is of greater importance than the tension flange in
lateral-torsional buckling, all solutions generated in this study are

referenced to the flange in compression at the left end of the beam.

2.4 Verification of Results

2,4,1 Convergence of the Method

The trigonometric power series used as displacement functions
converges to an acceptable point with the use of four terms of the
series. To illustrate this convergence, five H-shaped cross sections
were selected and solutions obtained for various stress ratios, tapers
and lengths. Solutions obtained using four and five terms to the dis-
placement function are given in Appendix C and summarized in Table 2.1.
Differences between the two solutions are less than 1.0%, and the

average difference is 0.207%. Since computing time is approximately 50%
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TABLE 2.1

Percent Differences Between Computer Solutions Obtained
with Four and Five Term Displacement Functions

Section I I1 I1T Iv v
Top Flange 4 x .25 5x .3125 |6 x ,3125 6 x .25 |6 x .1799
Small End Web | 6 x .1875 {10 x ,375 {14 x .400 {18 x .4375 {18 x .4375
Bottom Flange | 4 x .25 5x .1799 6 x .3125 |6 x .1799 6 x .25
Length 60" 180" | 120" 120" | 180" 180" |240™ 240" | 240" 240"
Taper 0.00 0.01}10.00 0.05|0.00 0.05/0.00 0.05 {0.00 0.05
Stress Ratio PERCENT DIFFERENCE
+1.0 0.00 0.00;0.00 0.05{0.00 0.01{0.00 0.02 {0.00 0.00
+.5 0.00 0.00}0.00 0.0140.00 0.00f{0.00 0.00 {0.00 0.00
0,0 0.02 0,090,022 0,13}40,02 0,12{0,03 0,13 {0,05 0,14
-.5 0.20 0.5110.24 0.3410.28 0.62]|0.34 0.66 {0.48 0.96
-1.0 0.38 0.30}0.8 0.10} 0.52 0.01{0.80 0.47 {0.81 0.19

Avg. % difference =

0.20%
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greater if five terms are used, solutions generated in the remainder of

this study are for four terms of the displacement function series.

2.4.2 Comparison with Alternate Methods of Solution

Closed-form solutions of the governing differential equations
are available for prismatic beams under uniform moment only. For
doubly symmetric beams (8),

V//ﬂAEZI IW szI GJ .
M = YV 4 Y (2.76)

cr L4 L2

where Mcr is the critical buckling load and the cross-sectional proper-

ties are as previously defined, For singly symmetric beams (8),

2
G“ZTL ) ] (2.77)
7 ET

ﬂzEI R ’ 4 I

M =-_+_-...._._._.z__?_{_ 1t l+___(_v_‘7.+

cr - 2 2 'I
2L, B Y

In this equation, the positive root is taken when the larger flange is
in compression; the negative root is taken when the small flange is in
compression.

The results of calculations using Eqs. 2.75 and 2.76 are com-
pared with those obtained using the proposed method with four terms of
displacement function in Table 2,2. In all cases the critical buckling
moments agree to within 0.17.

Equation 2.73 is identical to the characteristic equation for
tapered beams under moment gradient as derived by Chi (18) using the
minimum potential energy approach. Chi used a polynomial power series
for the displacement functions as recommended by Lee, Morrell and
Ketter (17),

u (z) = z(z _ 2)z" : (2.78)
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To compare solutions obtained using the trigonometric series proposed
here and the polynomial series proposed by Chi, the computer program in
Appendix A was rewritten to calculate the matrix elements of Eq. 2.73
using Eq. 2.78 as the displacement function. The solutions obtained
are given in Appendix C and summarized in Table 2.2.

The critical buckling moments calculated using trigonometric
and polynomial displacement functions agree only for the case of pris-
matic beams under uniform moment. The solutions are not in agreement
for other stress ratios; the differences between the solutions become
more pronounced for beams subjected to double curvature loading.

The results obtained with the proposed method do, however,
agree with those obtained by Culver and Preg (16), who used the finite
difference method to obtain critical buckling loads for doubly symmetric
tapered beams under moment gradients. Comparison of results is made on
the basis of a factor, C, defined by Culver and Preg as

M %
¢ = - (2.79)

Cl‘z

where Mcr* is the critical moment of the tapered beam under a moment
gradient developed at the large end of the beam and MCr2 is the critical
moment of a prismatic beam identical in cross section to the large end
of the tapered beam, both loaded with equal end moments. Culver and
Preg use Mcrz as the 'basic case" critical moment. Values of C calcu-
lated using the proposed method and the method of Chi with polynomial
displacement functions are given in Table 2.3. 1In all cases there is

excellent agreement between results obtained by the proposed method and

by Culver and Preg. The results obtained using polynomial displacement
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TABLE 2.3

"C" Values for Prismatic
Doubly Symmetric Members

Culver and

Section Stress Ratio Chi(18) Preg(10) Proposed

4 x .25 +1.0 1.00 1.00 1.00
+0.5 1.32 1.32 S 1.32

I 6 x .1875 0.0 1.83 1.85 1.85
5 x .25 -0.5 2.48 2.60 2.61
Length = 60" -1.0 2.49 2.74 2.75

6 x .3125 +1.0 1.00 1.00 1.00
+0.5 1.32 1.32 1.32

111 14 x .400 0.0 1.79 1.84 1.84
6 % .3125 -0.5 2.29 2.57 2.58
Length = 180" -1.0 2.19 2.72 2.72
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functions differ significantly for st?ess ratios less thén 0.0, when

the beam is in double curvature and significant reactions develop at the
beam supports. In Chi's derivation, the reaction term included in the
Emn integral is neglected, which is acceptable if the displacement func-
tion chosen satisfies the natural boundary conditions of the problem.
The polynomial series used by Chi does not satisfy the natural boundary
conditions, and the error involved increases as the induced reaction
increases.

The finite element method has also been used to determine the
buckling strength of structural members. In this method, a structural
member is divided into a number of finite-sized and conveniently shaped
sub-regions or elements. Typical elements are isolated and the varia-
tional problem is formulated for arbitrary boundary conditions employing
only simple polynomials. Inter-element continuity is preserved by the
appropriate choice of these polynomials. A final matrix equation is
assembled from the individual element equations, preserving the geometry
of the system, and boundary conditions are imposed upon this final matrix.
Points of element interconnection, or nodes, serve as locations for
force applications and specified displacement boundary conditions.

The program, BASP15, developed at the University of Texas, uses
the finite element method and was specifically developed to analyze the
stability of H-shaped sections with one axis of symmetry perpendicular to
the bending axis (34). The web is idealized using two-dimensional quadri-
lateral elements while the flanges are idealized by one-dimensional

elements.
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The program consists of two types of analyses: the first is an
in-plane stress analysis under the applied loads, the second uses these
stresses in an out-of-plane buckling analjsis. For in-plane analysis,
eighteen degree-of-freedom plane stress elements are used for the web
and truss elements are used for the flanges (18). For the out-of-~plane
analysis, nineteen degree-of-freedom plate bending elements are used for
the web and beam elements are used for the flanges. The characteristic
equation of the final matrix formulation is solved using inverse
iteration.

To obtain comparison results for critical buckling loads of
tapered and prismatic members under stress gradients, the program BASP15
was used. The beams chosen were discretized into a finite element mesh
as shown in Fig. 2.14. Convergence of the finite element solutions is
confirmed by repeating the analysis with different meshes of finite
elements. Three different modeling meshes were used in this study to
verify convergence of the solution: 4 x 16, 2 x 25, 4 x 8. The most
coarse mesh, 4 x 8, is shown in Fig. 2.14. Using the previous five cross-
sections, solutions were obtained for the critical buckling moments.
Some difficulty in achieving satisfactory solutions was encountered
since the use of flexural plate elements in the web allows consideration
of web distortion and local buckling in overall beam stability. F;r
this study, local buckling of the web is not an admissible failure mode
and web distortions are neglected. Thus, for sections with very slender
web plates, it was found that a mid-span stiffening element was needed

to ensure elastic lateral-torsional buckling before web failure.
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*
Percent Differences

TABLE 2.4

Between the Proposed
Method and Finite Element Solutions

Section I IT IIT Iv A
Top Flange 4 x .25 5x .3125 | 6 x .3125 | 6 x .25 6 x .1799
Small End Web 6 x ,1875 | 10 x .375 | 14 x .400 | 18 x .4375| 18 x .4375
Bottom Flange 4 x .25 5x .,1799 6 x .3125 6 x .1799 6 x .25
Length 60"  180"| 120" 120"| 180" 180"| 240" 240"| 240" 240"
Taper 0.00 0.01| 0.00 0.05| 0.00 0.05{ 0.00 0.05| 0.00 0.05
Stress Ratio Percent Difference
+1.0 +0.46 +1.79(+2.92 +2.95{+2.27 +1.96|+3.64 +3.54|+3.77 +3.53
+0.5 +0.21 +2.10({+2.92 +2.86|+2.24 +1.96|+3.66 +3.54|+3.75 +3.57
0.00 +0.12 +1.25({+2.87 +2.26{+2.16 +1.50(+3.69 +3.40|+3.75 +3.42
-0.5 +0.67 -0.99|+2.08 -1.39|+1.67 -1.02{+3.66 +2.59{+3.43 +2.81
-1.0 +1.85 +2.33|+0.29 +0.24|+1.12 +0.59(+3.32 +2.90{+3.32 +3.40

*
Calculations based on solution by the
terms of displacement function.

proposed method with four
Minus sign corresponds to a

finite element solution less than the proposed method solution.
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The critical moments calculated by the proposed method and the
finite element method are in close agreement. The results of these cal-
culations are shown in Appendix C, and the differences observed between
the solutions are summarized in Table 2.4. The critical moments calcu-
lated by the two methods never differed by more than 4% with an average
difference of 1.18%. Comparisons are based on solutions obtained using
four terms of the displacement function in the proposed method, and the
minimum finite element solution from the meshes considered. Convergence
of the finite element solutions can be seen with reference to Appendix
C.

Thus it is shown that the trigonometric displacement function
used in the proposed method is adequate. Solutions éalculated by the
proposed method are in excellent agreement with those obtained from
closed-form, finite difference and finite element solutions for doubly
and singly symmetric beams with less than 10° of taper and loaded by end

moments of varying magnitude.
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CHAPTER III

DEVELOPMENT OF PROPOSED DESIGN METHODOLOGY

3.1 Introduction

Solution of the governing differential equations for cases
involving taper and unequal end stresses is not possible in closed form,
and numerical techniques such as the proposed method are too involved
for use 6n a design basis. Equations 2.76 and 2.77 provide closed form
solutions of the critical lateral-torsional buckling load for prismatic
beams under uniform moment. This loading case, a prismatic beam loaded
by equal and opposite end moments, is defined as the "basic case." To
account for taper, it is proposed that the basic case solution be modi-

fied as follows:

(Mcr)s = CaMcr (3.1)

where Ca is a modifying factor to be determined and Mﬁr is the critical
moment of a prismatic beam with cross-section identical with that at the
small end of the tapered beam, and is calculated by Eq. 2.76 for doubly
symmetric sections ér by Eq. 2.77 for singly symmetric sections. The
moment , (Mcr)s’ corresponds to the critical moment developed at the
small end of a tapered beam subjected to end moments producing approxi-
mately uniform flange stress along the member, the "basic case" for

tapered members. The critical moment at the large end is then
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(Mcr)L = R(Mcr)s = RCuMcr (3.2)
where R is the ratio of the section moduli, to the extreme fiber of the
compression flange, at the large end to that of the small end.

For the case of varying flange stress, it is proposed that

these equations be further modified to

(Mcr)S = CbCaMcr (3.3)
M, ), = CRCM (3.4)

where Cb is a modifying factor, to be determined, for cases of stress
gradients.

The multiplying factors, Ca and Cb’ will be determined using
multiple linear regression analysis of theoretically correct values of

Mcr’ calculated by the method discussed in Chapter II. The development

of these two factors is described in the following sectionms.

3.2 Discussion of Regression Analysis Technique

Data generated in this portion of the study are treated statis-
tically in a stepwise regression search method. This technique econo-
mizes on computational efforts and computes a sequence of regression
equations by successively entering or removing independent variables.
Selection of variables is determined by the ability to explain the
variation in the dependent variable, but independent variables which are
too highly correlated with independent variables already selected are
screened out (35).

The BMDP series of computer programs, developed at the Health
Sciences Computing Facility, UCLA, which is sponsored by NIH épecial

Research Resources Grant RR-3, was used for the data analysis (36). In
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particular, the multiple linear regression computer program BMDP2R was
used to develop the prediction equations. The output of the analyses
are equations which include one or more independent variables, and the
coefficients to be applied to these variables are statistically deter-
mined to minimize the errors of prediction. The program output also
includes statistics to aid in the evaluation of the equations. The R
statistic is a multiple correlation coefficient and is the correlation
between the dependent variable and the predicted value from the multiple
regression. The term, R?, is the proportion of the variance of the
dependent variable explained by the multiple regression relating it to
the other variables. The nearer R is to 1.0, the stronger the linear
correlation.

The standard error of estimate, S, is analgous to the standard
deviation from the mean of a population, and is a measure of the scatter
of data points about the regression line. A small value of S reflects

the goodness of fit of the equation.

3.3 C, Modification for Taper

This study is limited to cross-sections, taper ratios and
unbraced lengths normally found in rigid frames of pre-engineered metal
buildings. Cross-sections sections were selected with the following

limitations:

minimum depth
1.5 < flange width £ 3.0

length
24 = minimum depth

flange width

15 flange thickness -~

50
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6 in. < depth of small end < 24 in.
3 in. < flange width < 12 in.
3/16 in. < flange thickness < 3/4 in.

Tapers were taken as 0.00, 0.01, 0.05, or 0.10 and unbraced lengths as
60, 120, 180, or 240 inches. The web thickness was 1/4 in. for sections
with a flange thickness greater than or equal to 3/4 in., and 3/16 in.,
otherwise. Both singly and doubly symmetric sections were included, and.
a listing of the sections and beam geometries considered is presented in
Tables 3.la and 3.1b. 1In all, a total of 941 cross-section, length and
taper combinations were generated.

The factor Ca is defined as the ratio of the critical moment at
the small end of a tapered beam subjected to "basic case" loading, e.g.
approximately uniform stress throughout the length of the compression
flange to the critical moment of a prismatic beam with the same cross

section as the small end of the tapered beam, that is,
C = ———~ (3.5)

with terms as previously defined. Solutions for the 941 cases were
obtained and regression analysis performed.

The selection of independent variables to be included in the
regression is often the most difficult problem in regression analysis.
A preliminary investigation of the data provides some insight. Figure
3.1 shows the variation of Ca versus o for a beam with 18 in. small end
depth, and 12 in. wide flanges with thicknesses of 0.375 in. and 0.25 in.

The results are shown for both the large and small flange in compression.
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The coefficient Ca decreases fairly linearly with increasing taper, and
with the smaller flange in compression, an increase in taper has a
greater effect on Ca'

Figure 3.2 shows the variation of Ca versus length for the same
section. It is apparent that Ca varies inversely with the length, and
that the effect is again more severe for cases in which the small flange
is in compréssion.

Further insight into possible independent variables is provided
by Salvadori (25) and Nethercot (37). Salvadori suggests the use of
VJGLZ/EIw as a nondimensional discriminating variable. Nethercot,

/

citing the work of Kerensky, suggests the use of the ratio (J \
: section

J where J is the St. Venant torsion constant. Nethercot and
flanges)

Rockey (32) suggest that (Iy ) may be of use

, COmp. flange/Iy, section
in a predictive equation.

Since Ca is dimensionless, only dimensionless combinations of
the basic parameters were used to develop trial independent variables.
Furthermore, since it is desirable that an expression for Ca default to
unity for the case of a prismatic beam with equal and opposite end
moments, the dependent variable in the regression was specified to be
(Ca - 1.0) and equations were regressed with a zero intercept. All
compounded independent variables constructed included the taper as a
component, and are fhus equal to zero for the prismatic basic case.

The compounded dimensionless independent variables created for
inclusion in the multiple regression were o, az, aVGJLZ/EIW, af/d, aIy/J,
uJ/Iy, aIyt/Iy, ach/Iy, alyc/Iyt, uIyt/ch’ aJc/Js, aJS/JC, uJS/Jt,

aJt/JS, aJt/JL, uJC/Jt, asx/d, aBX/l, ul/BX, adlsxkand ad/%, where d is
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the depth at the small end, o is the taper, subscript s refers to the
section, subscript c refers to the compression flange, subscript t
refers to the tension flange, subscript f refers to both flanges and
other terms are as previously defined. Initially, all of these varia-
bles were included in the regression analysis, and then the list was
selectively reduced. In addition, originally, a separate predictive
equation was sought for direct calculation of the large end critical
moment, but all equations regressed for this case resulted in errors of
greater than 15% even with five separate independent variables included.
Thus, it was decided to reference the Ca equation to the small end of a
tapered beam, and to multiply by R, the ratio of large end to small end
section moduli, to obtain the predicted critical moment at the large
end of a tapered beam,

The least error of prediction was obtained in the following

/5
C =1.0 - 1.0601 o/ SI%_ (3.6a)

equations:

a ET
w
C =1.0 - 0.1163 o> (3.6b)
L= 1 ) . i
cIe? J
C, = 1.0 - 1.4580 av Sr— + 44.6328 oz (3.6¢)
w y
22 )
C_ = 1.0 - 0.1501 o7 + 0.2950a (3.6d)
GJ,Q2 J Bx
C, = 1.0 - 1.4580 o g + 44.6328 oz + 1.0688 o (3.6e)
w y
% /6342 J
C =1.0 - 0,0355 o= ~ 1.0978 o/ =%_ + 38.8956 o (3.6f)
a d EIW Iy

The notation in these equations agrees with that previously defined, and

all section properties are calculated for the small end. Statistics for
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TABLE 3.3

Sections Deviating by More Than 5% from Expected Ca Value

Unconservative
Deviations

Equation  Depth  Taper Length  Symmetry Flange in Error

in. in. Compression
3.6a 6 .05 120 Double 7.4
6 .05 120 Double 5.4
8 .05 120 Single Small 6.1
12 .05 180 Double 5.1
12 .05 240 Double 8.7
12 .10 120 Double 5.1
12 .05 240 Double 6.4
12 .05 240 Double 5.0
12 .05 180 Single Small 6.3
12 .05 240 Single Small 11.1
12 .10 120 Single Small 6.2
18 .10 180 Single Small 5.5
3.6c 12 .05 240 Double 6.0
12 .05 240 Single Small 8.1
3.6f 6 .05 120 Double 5.5
8 .05 120 Single Small 5.1
12 .05 240 Single Small 7.2

Conservative
Deviations

3.6a 8 .10 60 Double -5.4
12 .10 60 Double -5.5
12 .10 120 Double -7.7
18 .10 120 Double -6.5
18 .10 120 Double -5.6
18 .10 180 Double -6.7
18 .10 120 Double -6.9
18 .10 180 Double -8.1
3.6¢ 12 .10 120 Double -7.1
18 .10 180 Double -5.2
18 .10 180 Double -7.3
18 .10 180 Double -7.6
3.6f 12 .10 120 Double ~5.7
18 .10 180 Double -5.4
18 .10 180 Double -6.7
18 .10 180 Double -6.2
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these equations are summarized in Table 3.2. Equations 3.6a, 3.6c and
3.6f are the best fits for one-, two- and three-parameter equations,
respectively. Although a one-parameter equation is preferred for sim-
plicity; Egs. 3.6c and 3.6f have significantly greater prediction cap-
ability than Eq. 3.6a and therefore all three equations are considered
in the next part of this study. Cases where critical moments calculated
by the proposed method deviated by more than 5% from moments calculated
by Egqs. 3.6a, 3.6c and 3.6f are listed in Table 3.3, and each listing
corresponds to a beam at the extremes of the study parameters, e.g.

greatest taper or length for the beam depth.

3.4 Cp, Modification for Moment Gradient

Using the proposed method, solutions were obtained for the
critical moments of beams with singly and doubly symmetric cross sec-
tions and varying stress ratios. Four cross-sections, two doubly sym-
metric and two singly symmetric were chosen and a total of fifty beams
were generated by varyiﬁg taper and unbraced length within the limits
described in Section 3.3. Small end cross-section dimensions, beam
lengths and tapers are shown in Table 3.4.

Solutions were systematically generated by considering one end
of the beam as reference. By varying the relative magnitudes of the top
flange stresses at the beam ends, solutions were obtained for beams in
single and double curvature. The top flange at the referenced end was
maintained at a relative stress magnitude, or stress index, of +1.0
(compression). A stress index of +1.0 (compression) in the top flange
at the opposite end of the beam allows a solution for the beaﬁ in single

curvature with approximately uniform top flange compressive stress. To
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Table 3.4

‘Section Data for Determining Cg

Small End | Flange | Comp. Flange | Tension Flange | Taper
Depth Width Thickness Thickness o Unbraced lemgth, in
in in in in radians 60 | 120 | 180 240
9.5 6.0 0.25 0.25 0.00 X X X X
0.01 x X X X
0.05 X X
i 0.10 X
9.5 6.0 0.25 0.1875 0.00 X X X X
: 0.01 X X X X
0.05 X X
0.10 X
9.5 6.0 0.1875 0.25 0.00 X X X X
0.01 X X X X
0.05 X X
) 0.10 X
17.25 10.0 0.375 0.375 0.00 X X X X -
0.01 X X X X
0.05 X X X X
0.10 X X
17.375 10.0 0.375 0.25 0.00 X X X X
0.01 X X X X
0.05 X X X X
0.10 X X
17.375 10.0 0.25 0.375 0.00 X X X X
0.01 X X X X
0.05 X X X X
0.10 X X
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obtain solutions for the full range of single and double curvature
cases, the stress index for the top flange at the opposite end of the
beam from the reference end was varied from +1.0 to -1.0 (tension) in
increments of 0.20. Doubly symmetric beams were considered with both
the large and small end as reference. Singly symmetric beams were con-
sidered similarly, and solutions were generated for both the small and
large flangé in compression at the referenced end. In total, 1650
cases were generated.

The factor Cb is defined as

™ )
Cp = TEEETE (3.7)

cr’o
where (Mcr)o is the critical moment at the referenced end for a stress
ratio of +1.0, and (Mcr)r is the critical moment at the referenced end
for the stress ratio in question. The term (Mcr)0 defines the "basic
case" for Cb of approximately uniform top flange compressive stresses
for the beam. It is important to note that (Mcr)r and (Mcr)o must be
determined for the same beam with the same taper. Thus, only changes
in the critical moment due to the stress ratio are included in the
factor Cb.

The choice of independent variables for the regression analysis
was guided by the work of Salvadori (25) and Morrell and Lee (17, 28).
For prismatic, doubiy symmetric beams, the results of Salvadori's work
have been statistically treated and a predictive equation obtained (9)

as

C, = 1.75 - 1.05r + 0.3r2 . (3.8)
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which is written in the notation of this paper. This expression is
used by AISC (3) for prismatic beams. Morrell and Lee (17) suggest the

use of
1.0 r

+1.0

c, = (3.9)
1.75 0.0

H
It

ol
1.0 + .25 I

for simply supported, doubly symmetric tapered beams. They also have
determined expressions to be used for continuous doubly symmetric
tapered beams which include the terms (1.0 - r) and 02(1.0 - r)/d as
independent variables (28).

A preliminary investigation of the data reveals some insight.

Figure 3.3 shows the variation of C, versus r for three prismatic and

b
three tapered beams. The beam depth is 9.5 in. and the flanges are 6
in. by 0.25 in. for the symmetrical cross-section and 6 inches by
0.1875 in. and 6 inches by 0.25 in. for the monsymmetric cross-sections.
This data was generated for the small end referenced case. It is
apparent that Cb does not vary linearly with the stress ratio, and that

for beams in double curvature, C, reaches a maximum and decreases

b
sharply. The stress ratio associated with the maximum value of Cb is
not constant but varies with taper. It is also apparent from Fig. 3.3
that the decrease in Cb for double curvature cases is more severe for
the case of the large flange in compression at the referenced end. For
such a beam in double curvature, the small flange is placed in compres-

sion at the opposite end, resulting in reduced stability of the beam and

thus a reduced value of Cb.
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Inspection of the data also indicates that for a given end-
referenced cross-section, Cb is nearly invariant if the magnitude of
the product ¢ is constant. Table 3.5 contains data for a 9.5 in. deep
symnetric beam illustrating this observation, and the same pattern is
also observed for singly symmetric cross-sections.

Figure 3.4 shows the variation of Cb versus r for a 240 in.
beam with a doubly symmetric cross section 17.25 in. deep and 10 in. by
.375 in. flanges. Data for two tapers are plotted; the upper curves
correspond to r varying with the small end reference, and the lower
curves to r varying with the large end reference. For cases of small
end reference, Cb shows a distinct maximum whereas for large end refer-
ence the maximum, if present, is not as clearly defined. Thus Cb varies
differently depending upon the referenced end.

Since Cb is dimensionless, only dimensionless combinations of
the basic parameters were included in the regression analysis. It is
desirable that Cb default to unity for the "basic case" of a stress
ratio equal to +1.0. Therefore, the dependent variable was specified
to be (Cb - 1.0) and equations were then regressed with a zero inter-
cept. All compounded independent variables included the term (r - 1.0)
which is equal to zero for the basic case.

The compounded dimensionless variables initially included in
the regression analysis were (r - 1), (r - 1)2, (r - 1)3, af(r - 1)d,
al(r - 1)2/d, al(r - 1)3/d and similar terms with higher powers of the
factor o&/d. Preliminary regressions considering the entire data set,

i.e. both ends of reference and full range of stress ratio produced

equations which yielded predictions up to 75% in error. When the data
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TABLE 3.5

Cy, Data for Identical Small End
Reference Beams, (af) Constant

Data for a singly symmetric beam, 9.5" depth.

af = 6.0 in.
a = .05 a = .10
T 2 = 120" 2 = 60"
+1.0 1.000 1.000
+0.8 1.143 1.143
+0.6 1.330 1.330
+0.4 1.581 1.580
+0.2 1.924 1.923
0.0 2.395 2.392
-0.2 2.985 2.980
-0.4 3.457 3.445
~-0.6 3.170 3.155
-0.8 2.399 2.389
-1.0 1.813 1.805
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set was divided into two subsets by referenced end, resulting equations
were up to 437 in error.

The lack of fit of these equations is largely due to deviations
for values of r less than -0.40. Thus it was decided to reduce the
initial data set to include only those results corresponding to stress
gradients greater than-or equal to -0.40, and regress separate equations
for large and small end reference. Data corresponding to a stress gra-
dient of -1.0 would be separately regressed, and linear interpolation
used to predict a value of Cb for cases with a stress gradient between
-0.40 and ~1.00. Such an interpolation will generally produce errors
on the conservative side. Figure 3.5 illustrates this procedure.

Considering the resulting equations as homélogous sets for
large and small end reference, the equations representing the best fit
are

Small End Reference

2 Parameters

c, =1+ .7898B% + .9379-%% B2 (3.10a)
2 ol

¢, = 1+ .79758" - 1.0753 g (3.10b)

c, =1+ .80698% - .6912 %§B3 (3.10c)

3 Parameters

2 ol 2

C, = 1+ .4702B° - .3812B + .9379 &' (3.10d)
C, = 1 - .59498 - .233983 + .9379 %%Bz (3.10e)

4 Parameters

C, = 1 - .42008 + 437782 + . 6804 %}BZ — .2076 %§B3 (3.10£)
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¢

Fig. 3.5 1Illustration of the Conservative Nature of the Proposed
Interpolation 120" Length Doubly Symmetric Section 9.5"
Depth
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2 ol
C, = 1 - .4164B + .44078 + .1653 B + 1.0765 7;B2 (3.10g)
Large End Reference -
2 Parameters
2 al_ 2
C, = 1+ .7924B° + .8566 -8 (3.11a)
. 2 ol
C, = 1+ .75958" - .7556 -8 (3.11b)
c, =1+ .79748% - .7176 %%33 (3.11c¢)
3 Parameters
2 ol _2
C, =1+ .4638B" - .3919B + .8566 EE: (3.114d)
C, =1 - .6044B - .22938> + .8524 %fﬁ? (3.11e)
4 Parameters
C, = 1 - .4101B + .44868% - 1.0307 %fﬁz + .1403 %§B3 (3.11f)
C, = 1 - .4139B + .44548% - .1492 %%B + .7315 %%Bz (3.11g)

The variable B in these equations is equal to (r - 1.0), and
o and d are determined with respect to the referenced end. Noting the
similarity of regression coefficients in homologous pairs, a separate
regression was made for the combined data set of small and large end
reference cases with stress ratios greater than or equal to -0.40.

Using the same notation, the following equation was obtained:

C, =1 - .3867B + 473982 + .9074 %%BZ (3.12)

Statistics generated for Egqs. 3.10, 3.11 and 3.12 are summarized in
Table 3.6. The homologous pairs of Eqs, 3.10a and 3.11a, Egs. 3.10d

and 3.11d, Eqs. 3.10g and 3.1lg and the single Eq. 3.12 are given
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TABLE 3.6

Cb Prediction Equation Statistics

Small End Reference

Large End Reference

Equation R R2 S S R2 R Equation
3.10a .996 .991 | .094 .082 .985 .992 3.11a
3.10b .996 .993 | .086 .111 9721 .986 3.11b
3.10c .993 | .985 121 .069 .989 .995 3.11c
3.10d .999 .997 |.051 | .012 {1,000 |{1.000 3.114d
3.10e .999 .997 .052 .019 .999 11.000 3.11e
3.10f .998 .997 .050 .012 |1.000 |1.000 3.11fF
3.10g .998 | .997 .050 .012 {1.000 |1.000 3.11g

Combined Data Set
3.12 .999 .998 | .038
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further consideration as these represent the best fits for two, three
and four parameter regressions, and these equations were used along with

c, Eqs. 3.6a, 3.6c and 3.6f to predict the critical moments of the Cb

data set for stress ratios greater than or equal to -0.40. The errors
observed were statistically treated and this information is summarized
in Table 3.7.

It is apparent that the two parameter C, equations will not be

b

satisfactory design equations, as both the maximum errors and 95% con-

fidence intervals are larger than 107%7. The four term Cb equations show

little improvement in prediction over three-term equations. For the

three term C, equations, Eqs, 3.10d, 3.11d and 3.12, the two term C
b a

equation, Eq. 3.6c, provides more accurate prediction than Eq. 3.6a and
significantly reduces the number of cases with greater than 5% unconser-
vative error of prediction. The further increase in predictive power
associated with the three term Ca equation is minimal, and the use of
two individual C, equations rather than the single Eq. 3.12 is an

b

unwarranted complicating procedure. Thus, the use of Eq. 3.12 for Cb

prediction and Eq. 3.6c for Ca prediction is recommended. Cases where
critical moments calculated by the proposed method deviated by more than
5% from moments calculated by Egs. 3.12 and 3.6c are listed in Table
3,8, and each listing corresponds to a beam at the extremes of the study
parameters, e,g. greatest taper or length for the beam depth.

Separate regression of a prediction equation for Cb at a

stress ratio of -1,0 was slightly less successful. As there is no

necessity for C,_ to default to unity, C, served as the dependent varia-

b b

ble and a statistically generated constant was included as an intercept.
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Independent variables included of/d, 2/d, Ic/Iy’ uIc/Iy, Ic/It, aIc/It,
Bx/d, aBX/d, BX/JL, aBX/JL, Jf/JS, och/JS, Jt/JC, ocJt/Jc, Jc/Jt, aJC/Jt,
JC/JS, and aJc/JS. Regression of a data set composed of both small and
large eﬁd reference sections produced equations which predicted values
of C, more than 50% in error. Considering the referenced ends individ-

b

ually, the following homologous sets of equations resulted:

Small End Reference

B
= _ - ol _X
C, = 5.2441 - 4.9677 1(:/:[y .6559 <% - 15.7893 o (3.13a)
C, = 2.7596 - 2.8152 fﬁ - 6562 & _ 15,6530 a—Bﬁ (3.13b)
b y y a " - a y a .
Large End Reference
B
C_ = 4.7664 - 3.9951 T /T_ + 1.2021 %% = 22,2077 & (3.14a)
b !y a a
8 B
ol X X
C, = 2.7684 + 1.2025 == - 2.2686 —* - 22.0724 o (3.14Db)

The statistics for these equations follow

Equation R R2 S
3.13a .993 .985 .056
3.13b .993 .986 .055
3.14a .960 .922 .086
3.14b .961 .924 .085

The taper and section properties to be used in these equations are taken
with respect to the referenced end.

Including the total 1650 cases, Eqs. 3.6c, 3.12, 3,13 and 3.14
were used to predict the critical moments. The interpolation between r
values of -.40 and -1.00 yields conservative results as can be seen

with reference to Fig. 3.6 which is a relative frequency histogram of
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the precent error observed in the prediction. The homologous pairs Egs.
3.13a and 3.1l4a, Eqs. 3.13b and 3.14b agree to within 0.1% of error.

In all cases, the maximum nonconservative errors were observed for beams
240 inches in length, taper of 0,05 and 0.10 and stress ratios of -1.00
with the small flange in compression at the referenced end. At a 95%
confidence interval, the estimate provided by these sets of equations

will be within 8.1% of the true value.

3.5 Limits of Equation Applicability

The previous equations were regressed for a limited data set,
and it is useful to determine extrapolation limits for their use.

Eight H-sections were selected, differing only in the thickness of one
of the flanges, and eight channel-capped built-up members were chosen,
differing only in the thickness of the flange lip. These séctions are
described in Table 3.9. The column labelled IyL/Iys is the ratio of

the moments of inertia of the large flange to the small flange and is

a measure of the asymmetry of the section. Solutions were obtained for
these sections with length and taper combinations of 120 in. and 0.00,
180 in. and 0.01, 120 in. and 0.05, and 240 in. and 0.05, and for stress
ratios of 1.0, 0,5, 0.0, -0.5 and -1.00, Thus 112 data points were
generated for each stress ratio.

Using the equations recommended in Section 3.4, the critical
moment for each of these cases and stress ratios was predicted. The
error statistics observed are summarized in Table 3.10, and it is
apparent that for beams in single curvature (r greater than 0.0) these
equations retain validity for sections with a IyL/Iys ratio of up to

4.0. All cases of greater than 5% observed error occurred with 240
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Wide~Flanged Sections

10.0 x t
d x .24

10.0 x .25
t d Reference
in. in. End
1.00 24,0 Small
0.75 24.0 Small
0.50 24,0 Small
0.25 24.0 Small
1.00 30.0 Large
0.75 30.0 Large
0.50 30.0 Large
0.25 30.0 Large

TABLE 3.9

2.0
1.0
4.0
3.0
2.0

1.0

75

in.

0.45

0.30

0.15

0.00

0.45

0.30

0.15

0.00

Channel-Capped Sections

d

in.

14,

14.

14.

14.

26.

26.

26.

26.

8 x .25
| 12.5 x t
d x
8 x .25
1
Reference yL
End I
yS
Small 4.375
Small 3.250
Small 2.125
Small 1.00
Large 4.375
Large 3.250
Large 2.125
Large 1.00
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inch beams and 0.05 taper. It is also apparent that the equations used
to predict Cb for stress ratios of -1.0 are not valid for large ratios
of IyL/IyS' Equations 3.13 and 3.14 are very sensitive to the ratios
IC/Iy and BX/d, both of which are measures of the asymmetry of the sec-
tion. The maximum value of Ic/Iy included in the first part of this
study was 1.50. As Ic/Iy and BX/d become large, Eqs. 3.13 and 3.14

predict meaningless, often negative, values for C By study of the

b*
data, however, an empirical limit of usefulness can be established.
When the data set is reduced to include only those sections

with IyL/Iy less than 2.5, the following error statistics are noted in

S
a data set of 40 cases:

T Mean Standard Deviation No. with >5% Error Maximum Error
Error, 7% of Error, 7% Conserv. Uncons. Conserv. Uncons.

Equations 3.13a and 3.14a
-0.5 -2.37 4,02 9 1 15.6 7.5
-1.0 3.79 7.19 2 13 15.3  23.7
Equations 3.13b and 3,14b
-0.5 =-2.57 4.18 9 1 15.5 5.8

-1.0 1.60 5.18 2 10 17.6 11.2

It is apparent that the homologous pair of Egs. 3.13b and 3.14b has the
greater predictive capability, and that predicted critical moments for
a stress ratio of -1.0 (double curvature) will be within 10% of the
actual moment at a 907 level of confidence when Egs. 3.13b and 3.14b
are used. In addition, it is noted from a study of the data that if

the following limitation is observed,

EXL(Q&- < 1.30 (3.15)
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the proposed equations can be expected to predict critical moments with
less than 87 unconservative error at a 957 confidence level for beams
in single curvature and with less than 127 unconservative error at a
95% confidence level for beams in double curvature. In all cases, the
error of estimation is reduced as the taper decreases and as the cross-

section becomes more nearly doubly-symmetric.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

4.1 Summary of Procedure

It is proposed that Egqs. 3.6c, 3.12, 3.13b and 3.14b be used

to predict the modifying factors to be used in a simplified design pro-

cedure for tapered beams. The following limitations should be observed

in the use of this method, in addition to those listed in Section 3.3:

A <130 (4.1)

EYL < 2.50 (4.2)

where d_, is the depth at the small end of the beam, I and I are the

S

yL yS

moments of inertia of the large and small flange respectively, and the

absolute value of the taper is used.

The steps in the proposed procedure are as follows:

(1)

Calculate the basic case critical moment for a prismatic
beam with the same cross-section as the small end of the
beam in question, using Eqs. 2.76 or 2.77. If the cross

section is singly symmetrical, the basic case critical

moment is calculated for both large and small flanges in

compression.
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(2)

(3)

(4)

(5)

(6)

(7)

(8)

Calculate the modifying factor Ca with reference to the
small end section properties, using Eq. 3.6c.

Calculate extreme fiber stresses in the flanges at the
beam ends. The end with the largest compressive stress is
chosen as the reference end, and the flange with the
largest compressive stress is the reference flange.

If the large end is referenced, calculate R, the ratio of
section moduli to the extreme fibers of the reference
flange at beam ends.

Calculate the stress ratio, r, as the ratio of the beam
end stresses in the reference flange. If the beam is in
double curvature, r will be less than 0.00.

If r is greater than -0.40, use Eq. 3.12 and the refer-
enced end section properties to calculate C, .

b

If r is less than -0.40, calculate C_ for r equal to -0.40

b

using Eq. 3.12, and C_ for r equal to -1.0 using Eq. 3.13b

b
for small end reference and Eq. 3.14b for large end refer-
ence. Use linear interpolation between these two values
to determine Cb for the stress ratio in question.
Calculate the tapered beam critical moment using Eq. 3.3

for small end reference and Eq. 3.4 for large end

reference.

4.2 FExample Calculation

To illustrate the critical moment calculations required in this

proposed method, the simple span beams shown in Fig. 4.1 are aﬁalyzed.
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Figure 4.1.

8 x .25

Beam Description and

d x .20

8 x .25

2.5 x .15

Unbraced length = 120.0 in.

Taper = 0.05
E
G

Load Case 1

85.0k - ft.c

30 x 10> ksi
11.2 x 103 ksi

;140.0k - ft.

Load Case II

81

Section Properties for Section 4.2

Section Properties:

Small End Large End

Depth, in. 14.0 20.0
I, in.* 22.67 22.67
yL

I, in.” 10.67 10.67
vS

I, in.® 33.33 33.33
I, in.% 264.48  586.24
s , in.> 41.14 63.38
X, top

3

Sx,bottom’ln' 34.93 54.53
J, in.% 0.126 0.142
I, in.® 1559.23  3096.51

BX, in. 5.763 7.845



The taper and unbraced length are within the ranges listed in Section

3.3 and

minimum depth _ 14 _
1.5 = flange width 8 1.75 2 3.0

length _ 120 _
24 z minimum depth 14 8.6
15 < flange width - 8 = 32 < 50

~ flange thickness .25
Inequalities 4.1 and 4.2 are satisfied since

IzL al

(=) =0.91 < 1.30
1 d

yS S

L L
= =2.13 < 2.50
I
yS
Following the steps in the proposed procedure:
Step 1. Basic case critical moment, using small end section

properties is calculated for this singly symmetric

section using Eq. 2.77:

2 3 2
M =T (30%107) (33.33)(5.763) 1+ ¢{>+ 4 (1559.23 / 11200(.126) (120)

+ )
cr 2(120) (120) 5.763)% 33-33 12 30000)(33.33)

For large flange in compression,

M = 7155k - in. = 596k ~ ft.
cr

For small flange in compression,

M
cr

3206k - in. = 276k - ft.

Step 2: Taper modification factor, Ca’ is evaluated, using

small end section properties and Eq, 3.6c, as

(11.2x10%) (.126) (120) 2
(30x10°) (1559.23)

(.05)(.126)
33.33

(@]
1]

1.0 - 1.458(.05) + 44,6328

0.960
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each load case.

@]
]

The calculations required in Steps 3 through 8 are made for

Step 3:

Step 4:

Step 5:

Step 6:

1.0 - .3867(.

1.028
Step 7:

Step 8:

For load Case I, the beam in single curvature:

Extreme fiber stresses.

24,79 ksi

Small end: top flange stress (compressive)

Large end: top flange stress (compressive) 26.51 ksi

Reference end: large
Reference flange: top (large)

Since the large end is referenced, R is evaluated as

Stop, large end _ 63.38
41.14

R = = 1.541

Stop, small end

The stress ratio, r, is evaluated as

_ top flange stress, small end _ 24.79 _ 0.935
top flange stress, large end 26.51 ‘

Using Eq. 3.12 and large end section properties, Cb

is evaluated as

.9074(=0.05) (120) (.935-1) %

935-1) + .4739(.935-1)% + 20.0

Omitted since the stress ratio is greater than -0.40.

Using Eq. 3.4, the critical moments are evaluated as

(M_ ), = 1.028(1.480)(596) = 907k - ft.
_ 907(.935) _ ~
M, g = =755 = 550k - ft.

The critical moment for the large flange in compres-
sion from Step 1 is used as the basic case moment
since the large flange is the referenced flange in

this case.
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The moment calculated by the theoretically correct procedure
is 881k - ft., differing by 3,0% from that calculated by the simplified
procedure.
. For load case II, the beam is in double curvature:
Step 3: Extreme fiber stresses.
Small end: top flange stress (compressive) = 29.17 ksi
Large end: bottom flange stress (compressive) =
17.61 ksi
Reference end: small
Reference flange: Ilarge
Step 4: Omitted since the small end is referenced
Step 5: To evaluate the stress ratio, the large flange tensile
stress at the large end is evaluated as -15.15 ksi.
The stress ratio is then

_ top flange stress, large end _ -15.15 _
top flange stress, small end 29.17

~0.519

Step 6: Omitted since r is less than -0.40.
Step 7: Using Eq. 3.12, small end section properties and a

stress ratio of -0.40, Cb is evaluated as

C, _, = 1.0 - .3867(-.4-1.0) + .4739(-.4-1.0)% +

.9074(.05) (120)%(-.4-1.0)2
14.0

= 3.232

Using Eq. 3.13b, Cb for a stress ratio of -1.00 is
evaluated as

c _ 5. 7506 . 2:8152(5.763) _ .6562(.05)(120) _ 15.653(.05)(5.763
b,-1  “* 14.0 14.0 14.0 -

0.998

[}
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By interpolation, C, for a stress ratio of ~,519 is

b

= 3.232 4 L4=2519)

3 (3.232 -~ .,998) = 2.789

%

Step 8: Using Eq. 3.3, the critical moments are evaluated as

™ )

cr’S

a1 )

cr’L

2.789(.960) (596) = 1595k ~ ft.

1595(.519) (1.541) = 1275k - ft.
The critical moment for the large flange in compres-
sion from Step 1 is used as the basic case moment
since the large flange is the referenced flange in
this case.

The moment calculated by the theoretically correct procedure
is 1516k - ft., differing by 5.2% from that calculated by the simplified
procedure. This error is conservative, as anticipated because of the

interpolation,

4.3 Conclusions

A method has been developed to determine the elastic critical
lateral~torsional buckling moment of tapered beams with at least one
plane of symmetry in the plane of loading, simply supported beams and
subjected to bending moments at the ends. The governing differential
equations were derived using the method of Trahair (21) and numerical
solutions were obtained using the Galerkin method. Critical buckling
moments determined using both four and five terms of a trigonometric
displacement function showed that adequate convergence of the solution
is assured with the use of only four terms, resulting in a savings of

computer time,
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The solutions obtained were compared with alternate solutionmns
available in the literature for prismatic and doubly symmetric tapered
beams, and agreement was excellent. Finite element solutions for pris-
matic and tapered, singly and doubly symmetric sections also showed
excellent agreement with the solutions from the proposed method.

Using solutions generated by this method, and a step-wise
multiple regression technique, a simplified design procedure was formu-
lated. Using this procedure, critical buckling loads for simply
supported tapered beams loaded by end moments will be predicted, at a
95% confidence level, with an accuracy of +8% for single curvature
cases and +127% for double curvature cases. Limitations for the use of
this procedure have been empirically determined, and must be observed.
This proposed method is recommended for use with built up members com-
posed of relatively thin plates, as are commonly in use in rigid frames
of pre-engineered buildings. The method may also be applied to
channel-capped sections if the ratio of large to small flange moments

of inertia is less than 2.50.

86



10.

11.

12.

REFERENCES

Amirikian, A., "Wedge-Beam Framing,'" Transactions of ASCE, Vol. 117,
Paper No. 2508, 1952, pp. 596-631.

"Specification for the Design, Fabrication and Erection of Structural
Steel for Buildings," Supplement No. 3, Appendix D, American Insti-
tute of Steel Construction, New York, 1974.

"Specification for the Design, Fabrication and Erection of Structural
Steel for Buildings," American Institute of Steel Construction, New
York, 1978.

Kuzmanovic, B. 0., and Willems, N., Steel Design for Structural
Engineers, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1977.

Bleich, F., Buckling Strength of Metal Structures, McGraw-Hill Book
Co., Inc., New York, N.Y., 1952.

Timoshenko, S. P., History of Strength of Materials, McGraw-Hill
Book Co., Inc., New York, N.Y., 1953.

Timoshenko, S. P., and Gere, J. M., Theory of Elastic Stability,
2nd ed., McGraw-Hill Book Co., Inc., New York, N.Y., 1961.

Galambos, T. V., Structural Members and Frames, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1968.

Guide to Stability Design Criteria for Metal Structures, Structural

Stability Research Council, 3rd ed., B. G. Johnston, ed., John Wiley
and Sons, Inc., New York, N.Y., 1976.

Wagner, H., "Verdrehung und Knickung von offenen Profilen," 25th
Aniversary Publication, Technische Hochschule, Danzig, 1904-1929,
Translated in National Advisory Committee for Aeronautics, Technical
Memoir No. 807, 1936.

Timoshenko, S. P., "Theory of Bending, Torsion and Buckling of Thin-
walled Members of Open Cross-—section," Journal of the Franklin

Institute, Vol. 239, 1945.

Vlasov, V. Z., Thin-Walled Elastic Beams, 2nd ed., Israel Program for
Scientific Translations, Jerusalem, Israel, 1961.

87



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Bleich, F., and Bleich, H., "Bending, Torsion and Buckling of Bars
Composed of Thin Walls," Prelim. Pub. 2nd Cong. Intern. Assoc. Bridge
and Structural Eng., English Edition, Berlin, 1936.

Lee, L. H. N., "Non-uniform Torsion of Tapered I-beams," Journal of
the Franklin Institute, Vol. 262, 1956.

Preg, S. M., Jr., "Analytical Development of an Interaction Formula
for the Design of Tapered Beam-Columns," Thesis presented to
Carnegie Institute of Technology, at Pittsburg, Pa., in partial
fulfillment of the requirements for the degree of Master of Science,
1967.

Culver, C. G., and Preg, S. M., Jr., "Elastic Stability of Tapered
Beam-Columns," Journal of the Structural Division, ASCE, Vol. 94,
No. ST2, Proc. Paper 5796, February, 1968, pp. 455-470.

Lee, G. C., Morrell, M. L., and Ketter, R. L., "Design of Tapered
Members," Welding Research Council Bulletin, No. 173, June, 1972.

Chi, S., "Elastic Stability Analysis of Tapered Members," Thisis
presented to the University of Oklahoma, Norman, Ok., in partial
fulfillment of the requirements for the degree of Master of Science,
1978.

Trahair, N. S., and Kitipornchai, S., "Elastic Lateral Buckling of
Stepped I-Beams," Journal of the Structural Division, ASCE, Vol 97,
No. ST10, Proc. Paper 8445, Oct., 1971, pp. 2535-2548.

Anderson, J. M., and Trahair, N. S., "Stability of Monosymmetric
Beams and Cantilevers," Journal of the Structural Division, ASCE,
Vol. 98, No. ST1, Proc. Paper 8646, Jan., 1972, pp. 269-286.

Kitipornchai, S., and Trahair, N. S., "Elastic Behavior of Tapered
Monosymmetric I-beams," Journal of the Structural Division, ASCE,
Vol. 101, No. ST8, Proc. Paper 11479, Aug., 1975, pp. 1661-1678.

Winter, G., "Lateral Stability of Unsymmetrical I-beams and Trusses
in Bending," Transactions of ASCE, Vol. 108, Paper No. 2178, 1943,
pPP. 247-258.

de Vries, K., "Strength of Beams as Determined by Lateral Buckling,"
Transactions of ASCE, Vol. 112, Paper No. 2326, 1947, pp. 1245-1271.

Hall, D. B., discussion of "Strength of Beams as Determined by
Lateral Buckling" by K. deVries, Transaction of ASCE, Vol. 112,
1947, pp. 1276-1279.

Salvadori, M. G., "Lateral Buckling of I-Beams,'" Transactions of

ASCE, Vol. 120, Paper No. 2773, 1955, pp. 1165-1177.

88



26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

Salvadori, M. G., "Lateral Buckling of Eccentrically Loaded I-Columns,"
Transactions of ASCE, Vol. 121, Paper No. 2836, 1956, pp. 1163-1178.

Clark, J. W., and Hill, H. N., "Lateral Buckling of Beams," Journal
of the Structural Division, ASCE, Vol. 86, No. ST7, Proc. Paper 2559,

July, 1960, pp. 175-196.

Morrell, M. L., and Lee, G. C., "Allowable Stress for Web-Tapered
Beams with Lateral Restraints," Welding Research Council Bulletin,
No. 192, February, 1974.

Trahair, N. S., The Behavior and Design of Steel Structures, Halsted
Press, John Wiley and Sons, Inc., New York, N.Y., 1977.

Boley, B. A., "On the Accuracy of the Bernoulli-Euler Theory for
Beams of Variable Section," Journal of Applied Mechanics, Vol. 30,
September, 1963, pp. 373-378.

Lee, G. C., and Szabo, B. A., "Torsional Response of Tapered I-Girders,'
Journal of the Structural Division, ASCE, Vol. 93, No. ST5, Proc.

Paper 5505, Oct., 1967, pp. 233-252.

Nethercot, D. A., and Rockey, K. C., "A Unified Approach to the
Elastic Lateral Buckling of Beams,'" The Structural Engineer, Vol.
49, No. 7, July, 1971, pp. 321-330.

Barta, T. A., "On the Torsional-Flexural Buckling of Thin-Walled
Elastic Bars with Monosymmetric Open Cross-Section," in Thin-
Walled Structures, A. H. Chilver, ed., Chatto and Windus, London,

England, pp. 60-86.

Akay, H. U., "Buckling Analysis of Stiffened Plates - BASP15,"
Computer Programming Series, The University of Texas at Austin,

January, 1975.

Neter, J., and Wasserman, W., Applied Linear Statistical Models,
Richard D. Irwin, Inc., Homewood, Ill., 1974.

"BMDP-77, Biomedical Computer Programs," W. J. Dixon, Series Ed.,
M. B. Brown, 1977 ed., University of California Press, Berkeley,
Calif., 1977.

Nethercot, D. A., "Lateral Buckling of Tapered Beams,'" Publications,
International Association of Bridge and Structural Engineering,
Vol. 33-II, 1973, pp. 173-192.

89



APPENDIX A

Computer Program Listing
and Sample Output



CORSBREET XL RFEXAF IR EL AR IFXEEEXRSFABRIEXE P XXX RB X BRI RERXARXEAZTRRE BT ERRE R%
[od-1- 2233 2 2 2 R R 2 s e R e s et e e s e el s S Rt i a2 22 S E s ]

Cu=x
Cs=
Cs=
Cc=
CH=
Cwx
Coe
Cx=
Ce=
Cam
Ccex
Ce*
Cux
C*=
Cx=
CcE=
(o 20
Cx=
C*e
Cxs
C#=
C*=
C=x
Cx=
Cx=
Cex
Cx=
C=x
C=

LIBTB
A PROGRAM FOR THE
ELASTIC STABILITY ANALYSIS
OF BEDGE BEAHS

OUNDER MOMENT GRADIENTS

SUBMITTED BY PRISCILLA NELSON,IN PARTIAL COMPLETION OF TEZ

REQUIRENMENTS FOR THE MASTER'S DEGREZ IR CIVIL/STRUCTURAL ENGINEERING

JULY, 1979

MAJOR PBOFESSOR: DR. THOMAS M. 3UBRRAY

%%
%
sk
%
%
ax%
a%
Kk
TS
%

-1

X
w
E-3 ]
L2
-3
&
%
& %
B%x
X
ek
£
e
"%
R”X
i
EE
%

CHA R e A e e a R R R R R N R R AL G R R R E R BE SRR A RS A XA A ARE S XA B R R X RA R R RO RS X
CHERRE R AR R A TEE R R R E R EF R R TR R R B SRR R SRR RE AR R B IRB A D AR T LR RAXGXL RV RERETF AN

Ca%
C%xx
CHx
CHx
ot 2
C=x
Cx%
C#*
CHx%
Cx=%
[of. 3
C#x
CEx
Cxx
Cx#
C*=*
Cx%
Cx%
Cm%
Cx*
Cxx
Cex
C%x
Cx=
C#=x
CH%
C*%
C =%
Cx*
Ch®
C#=
CH%
Cwx
Cex
Cx
C*=
fol 2
CHu

CARD

CARD

CARD

INPOT INSTSUCTIONS
ONE

FOLL EIGHTY CCLUXNS AVAILABLE FCRB LOAD AND GEOHZT
IDENTIFICATION. INFORMATION WOT USED IN PEOGRAH.

THO

IN BF1C FOuHAT, ZNTZR BEAN CROSS~SECTION LATA.

B1 TOP? FLANGZ LIP LENGTH

T1 TOP FLANGE LIP THICKHNZI3S
B2 TOP FLANGE LENGTH

T2 TOP PLANGE TAICKNZISS

B3 HWEB LZENGTH

T3 @EB THICKNESS

B4 BOTTOM FLANGE LENGTH

T4 BOTTOM FLANGE THICKNESS

THREE

IN 4F10 FORMAT, ENTZ2 BEAY GELOMETRY AND STRESS RATIOS.

ALPHA TAPER

{L LENGTH

2L ELATIVE STRZ35 AT LCDFI END OF T BZIAK.
2L=+1.0 CCXPRESSION IN TCZP FLANGE
Zi=-1,0 CCMPRISSION IN BCIIZON FLANGE

IR RZLATIVE STRESs AT XIGHT EnxD CF THE BEAMN.
ZBR=+1.0 COMPRIS5ION IX TCP FLANGE
ZR=~-1.0 COMPRESSION IN BCTZUM FLANGE

CAKD

"END OF DATAW STARTING IN COLUNN 2.

-2 3
=k
*%
s
P
Fx
2%
s
T
%
Py
T
P
TS
T
TS
™
&%
®%
%
%
"%
e
TS
TS
&%
TS
%
nx
Ao
* %
b2 3
*x
%
-3 3
=a
&%
3

C*‘*#***‘**t*t‘tt*t‘#‘*t‘.!*lt‘t!ttttt'*t#tt***tttt#tt*t*ttl*t****t**tt**i#*tt#t
C##tt#***t*#!*t*#“*‘ﬁ***l'*'*ﬁ‘**‘*“**ttt*‘lt#‘ttt#tt**ttt#l*ttxtt!#*********#
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EXTERNAL AHBN,CHN, HHN,GNN

DIMENSION 2(8,8),C(8,8),5(4),2Z(8,8),3ETA(8), dK(128),% (B) ,ALFA {16)
coumsow B1,7T1,82,72,B3,73,B4,T4,E, ALPHA, XL, XKL, G, 1L, ARFA,H,N,¥T
COMHON AKEA,GAHM,NDD,YTL,73L,ZX

COMPLEZ ALFA,2Z,%

DOUBLE PRECISION INDOF,ENDO

DATA ENDOF/SHEXD 0O/

DATA INPUT

9999 EEAD(5,500) ENDO
500 FORMAT (1X,A5,74H
1 )
HRITE(6,501)
501 PORMAT (1H1)
IP(EXDOF.EQ.EKDO) STOP
WRITE(6,500) ENDO
EEAD (5, 101)B1,T1,B2,72,B3,T3, B4, T4
101 FPORMAT (8F10.4)
25 READ(5,107) ALPHA, XL, 2L,2R
107 FORMAT (4F10.4)
£=30000.
G=11200.

NDD RECOEDS IF TOP FLANGE AT REFERENCED EKD IS IN TENSIOK.

NDD=-1
I7F (21.1T.0.0) NDD=+1

ITERN IS THE NUMBEIR OF TERMS INCLUDZD IN THE DISPLAGEMENT FUNCTION.

ITERN=0
ERITE (6, 14) ITERN ’

14 FORMAT (1HC, 'THE NUMBER OF TEEMS INCLUDED IN THE DISPLACEMENT FUNCT
1I0ON IS',Zu4,t' 1)

SECTION PROPERTY CALCULATIONS

BR=B3+ALPHA*XL

AREA=B?*T1+BZ*T2+B3*TB+BU’T9#B1*T1

AREAR=AREA+ALPHA=ZL*T3

K=ITERN*2
IBAL=(2.*81*?1*(53*B1/2.)+B2*T2*BB+B3*33*T3/2.)/AREA
YSAE=(2.*B1*T1*(BE-B1/2.)*BZ*TZ*BB+BE*BR*T3/2.)/AEEAR
YTOL=B3~-YBAL

YTOR=BR-YBAR
XIL=(T?*E1**3*2.+BZ*T2**3+T3*53**3+BH*TQ**3)/12.+2.*T1*B1*(YTOL-31
1/2.)**2+BZ*T2*YTOL*YTOL+B3*T3*(B3/2.-YTOL)**2+BH*TQ*Y3AL*YBAL
XIB=(T1*B1**3*2.+BZ*T2**3+T3*BR**3+B#*TQ**B)/12.+2.*T1*B1*(YTOR°B1
1/2.) *=2+B2*T2*YTOR*YTOR+BR*T3* (BR/2.~ YTOE) **2+BU*Tu*YBAR*YBAR
TJL=(2.*51*T1**3+BZ*T2**3+BB*T3**3#BU*TQ**B)/3.
TJB=(2.*B1*T1**3*82*T2**3*BR*T3**3+B#*Tﬂ**B)/3.
YTL=2.*B1=T 1% (B2/2, ) **2+T2%82%=%3 /12,

YBL=Tu*BU*x*3/12,

YI=YTL+YBL

HL= (3.%B1#B1*B2#B2*T1=-T4*B3%*BY #=3) /12, /1T

HR= (3.*B1*B1*B2*B2* T1-TU=BR*BY*=*3) /12, /Y1

YOL=B3+HL~-YBAL

YOB=BR+HR-YBAR

EX=B2*B2*B1*B1*T1/4./YTL

BIL=YTL*YBL* (EX+B3) *=2/YT

AIR=YTL*YBL* (EY+BR) **2/YT

EOL= (XIL+YI) /AREA+YOL*%2

ROR= (ZIR+YI) /AREAR+YOR**2

SL=4iIL/YTOL

SR=XIR/YTOR

SBL=XIL/YBAL -

SBR=XIR/YBAER

GAM=YIL*YBL/YI
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BXL=(YBAL*(T“*B“**3/12 *B“*mu*YBAL*YSAL)‘Y”OL*(”’*

XLs . T 7 T2%82%%3/12, «R2%T2x%
léig;*gTogg-E?*BzaE1*T1‘{YTOL/Z.-B]/“.)-2.*51*11*(Y:01**3-1 5%B1=%yT
pa TOL+ * xyT - BAT - e b1 ’ :

S etor B1*YTOL B1*31*31/”.)+YnA~**Q*-3/Q.—Yluh**Q*TB/Q.)/IIL+2
BK3=(YBAE*(TU*BU**3/12 *BUTUXYBARYYBAR) ~YTOR* (T2
= 4 . T 5 T (T2*B2*=%3 /12, +B82%T2x%
;ggz;*gTOR%;g;*Bz*B1*T1*[YTOﬁ/z.-B1/U.)‘2.*51*T1*(YTOE**§‘1 S*¥BI*yT
TOR+3B *yT - * K by .
S ares 3 YTOR-B1 51*31/“-}*YBAH**U*_3/Q-'YTOR**“*TB/“-)/IIR*Z

CALCULATION OF MOMENT GRADIEKT TERH

ARFA=ZR*SR/2L/SL* (~1.0)
IF(NDD.GT.0)ARFA=ZR*SBR/ZL/SBL* (~1.0)
IF(YOL.LE.1,E~U.AND.YOL.GE,~1. E~#) 3I0L=0.0
I¥ (YOE.LE. 1. E~4.AND.YOR.GE.~1.E-4) YOR=0.0

OUTPUT OF SECTION DATA
¥RITE(6,113)B1,T1,B2,T2,B3,T3,B4,T4,1L,ALPHA

113 FORMAT (1HEO,/' DIMENSIONS OF CRO0SS SZCTION'//
13%,'BY =',F10.5,' IN',3%,'T1 =*¢,F10.5,! IN'y/

13%,'82 =',F10.5,' IN',3%,'T2 =',P10.5,' IN'//
13X,'83 =',F10.5,' IN',3%,'T3 =',F10.5,' IN'//
13X,'84 =',F10.5,' IN',3%,'T4 =1,710.5,' IN'/,
13X, "LENGTH=',F10.2," IN.',//,3%,"ALPEA = ' ,FB.4)

WRITE(6,111)ROL,ROR,YOL,YOR,2L,2R
111 FORMAT(/,' RESUL?S',//,10X,'LZFT ZND SECTION PBOPERTIES',20Y,'RIGH
2T END SECTION PROPERTIES',//,7%,'RO =',F11.4,' IN.',22%,'RO =
2V, F10.4,"' IN,',//,7%,'10 = ',?”10.4," IN.',22%,'Y0 = ',F10.4,"
3IN.',///,7%,'RATIO OF STRESSES I5,LZFT TO RIGHT ',FP8.4,' :',PF8.4)
HRITE (6,103) AREA, AREAR,YBAL,YBAR, XIL, XIR
103 FORMAT(//,7%,'AREA = ',F10.5,' IN*%2',20%,'AREA = ',F10.5,! IN«%2!

1,//+7%,"¥BAR = ',F10.5,' IN. PROM BOTTD3',10%,'YBAR = ' F10.5,' IN
2. FRO# BOTTOH',//,7X,'IX = ',P15.5, " Iu*=4',15%,'Ii = ',P15.5,
3t IN*=y?)
¥RITE (6,73)YI,YI,dIL,%IR,TJL,TJR,BLL, BI3

73 FORMAT(//,7%,'IY = 4,F15.,5," IN*=4' ,154,'TY = ',F15.5," IN=x=xy!
1.//.,7%,'Cd = ',F15.5,' IN==%6',15%,'Cd = ',F15.5,' IN=x=x6',//,7X
2,'J = ',F15.5,' IN®=4',15%,'J = ',F15.5," IN=x4',//,77,'B%
3 = ',F15.5,* IN.',17X,'BX = ",F15.5,' IN.!)

CHANGE TO UNITS OP FEET

=P% 12%%D
=G*12, %2
IL=dZIL/12, %26
YI=YI/12.%%4
LL=XL/12.
ARZA=ARZA/12, *=*2
GAH=GAM/12,.%%4
B3=E3/12.
I3=T3/12.
B4=BUs12.

T4=Tu /12,
B2=B2/12.
T2=T2/12.
B1=81/12.
Ti1=T1/12.
YIL=YTL/ (12.0%x%4)
YBL=YBL/(12.0%=%4)
EX=EZ/12.

E
G
§

INITIALIZE MATRICES

c(I,J)
205 CONTIN

(=3 U [}
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INTZGEATE BATKIX ZLIMEINTS

I 3 M SUBROUTINE DCAD3IE USED
STR=0.0
END=1.0
AERE=0.

RERZ=0.001

DO 200 I=1,ITERN

D0 200 S=1,ITERN

M=I-1

N=J-1

A(I,J)=DCADKE (ANMN, S“”,Lhu,%EPP,REER,EBBOB,IEE)
A(I+ITZEN,J+ITERN)= =DCADERE (AMN,STR3, END,AERR,EEZPE,ZRROK, IZR)
C(I+ITERN,J+ITEREN)= DCADE“(G!V,SIR,EED,AERB,EEEE,~?ROt,--.)
c{I, ;”’BN+J)-DLADRL(;BV,QLR,’ND,AEEB,EERR,EEROR,L;A)

200 CONTINWUZ .

COMPLETE MATRICES USING SYMMETRY

DC 105 I=1,K

DO 1

05 J=1,K

A(J,I)=A(I,d)

C(Jd,

)=C(I,J)

105 CONTINUE

c
I

Ia=K
IB=K
IZ=K

IJ0B=

202 CalLl

ALCULATE EIGENVALUZS
B ¥ SUBROUTINE EIGZF USED

.

0
ZIG2F (A,IA,C,IB,K,IJOB,ALFA,BETA,22,1Z,%K,IER)

CR=10000000000.

TD=1
DO 1
IF (2

0000000.
12 I=1,K
BS(BETA(I)).LE.1.02-8) Z({I)=CR

IF (ABS(BET2(I)).3T.1.E-8) X (I)=ALFA(I)/BETA(I)

TT=R

EAL (X (1))

IF(TT.LE.0.0) TD=ABS(TT)

FIND MINIBUM EIGENVALUE

aQITZ(6,3)X(I),ALFA(I),BETA(I)

3 FORX

AT (1X,5F15.96)

112 CE=aMIN1(TD,CR)

CALCULATE HOMENT AT RIGHT END OF BEIAM

)

IGN CONVENTION AS PRESENTED IN THESIS

OM=CR*NDD* (-1.0)

CRHN=
OH#=0

0

312 ¥RIT

300 FORMAT(//,' CRITICAL MOMENT AT LEZFT END EQUALS',F15.5,' RIP-7T.!

!

GOTO
§28 STOP

ENTD

OM*ARFA
M*ZL/ABS (Z1)

UTPUT FINAL RESOLTS
2(6,300)0M CRH

CRITICAL MOXENT AT RIGHT ZND EQUALS',F14,5,! KIP-FT.")
9959
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FUNCTION ANN(Z)

coumow 81,T1,32,72,53,73,34,74,2,ALPHA, XL/ 54L,G,dIL,ARFA, N, Y, (T
COMHON AREX,GAM,NDD,YTL,YBL,EZX

PP=3.14159

IP (M.2Q.0)UNZ=-1. *PP*#2sSIN (PP*Z)

IF (4.EQ.1) UMZ=2,%PP*COS (PP*Z) -1, *PP*= 2% 7 &SI ( PP*7)

IF(4.2Q.2) UNZ=2, #SIN (P2*Z) +4. *PD*Z*C0S (PD#7) - PP*k 2% 2%« 2£5TY (PP*Z)
IF (4.GT.2) UNZ=H% (H~1) #Z%% (4-2) *SIN (PP*Z) -PP*#2%L* *M*SIN (2D*Z) +2. %P
1P*4%Z%* (M- 1) =COS (PP*72)

IP(N.2Q.J) UNZ=-1,%PP**2%SIN (PP*Z)

IF(¥.EQ.1) UNZ=2.%PP*COS (PP*Z) =1, *PP*=*2%2%SIN (PDP*Z)

IF(N.2Q.2) UNZ=2,#SIN (PP*Z) +4.*PP=Z*C0OS (PP¥Z) - PO** 2% 2+ =2 %3N (PP*Z)
IF (N.GT.2) UNZ=N* (N-1) *Z%= (N~2) *SIN (PP*Z) ~PP** 2#Z%*N*S IN (PP*Z) +2, P
1P%N%Z%% (N-1) *COS (P2*7)

AMN=UHZ*UNZ#E*Y] /XL ¥% 3

RETORN

END

FUNCTION CHN(Z)

coumoN s1,7T1,82,72,33,T3,B4,T4,2,ALPHA, L1, 8L,6,4IL,ABFA, 4, N, 71
COMMON AREZA,GAM,NDD,YTZ,IBL,ZZ

PP=3.14 159

IF (M.EQ.0)U¥Z=~1, *DP=#2%xSIN (PP*2Z)

IF(8.EQ.1) U¥Z=2.%PP*COS (PP*Z) =1, %P2== 2% J&SI) (PP*Z)

IF(M.EQ.2) UMZ=2. *SIN (PP*Z) +4, ¥PR*7*COS (2P*Z) - PDP=x 22 2% x24STY (PP*2)
IF (M.GT.2) UNZ=N% (4= 1) #T%% (¥~2) $5IY (PP*2) ~PP** 2x7# 5 M«S Iy (PDXZ) 42, #P
1P=M*Z%= (4= 1) *COS (PP*7Z)

IF (N.EQ.0) UNI=SIN (PP*2)

IF (N.GT.0) UNI=Z*=®N*SIN (PP*Z)

GUN=UNI*UNZ* (1.0- (1.0+ARPA) #2) /XL*NDD

RETURY

END

FUNCTION GHN(Z)

cossoN B1,71,82,12,33,T3,B4,T4,E,ALPHA, XL, %ML ,G, 1L, ARFA,H,N, ¥
COMNON AREZA,GAM,¥DD,YTL,YBL,ZX

PP=3.14159

IF (4.EQ.0) URI=PP*COS (PP*Z)

IF (N.EQ.C) UNI=PP*COS (PP*Z)

IF (M.EQ. 1) UBI=SIN (PP*7) +PP*2*COS (PP*L)

IF (§.EQ.1) UNI=SIN (PP*Z) +PP*2*COS (PP*32)

IF(M.GT.1) UEI=U*Z** (M~ 1) *SIN (PP*Z) +PP=Z**M%COS (PP*2)

IF(N.GT. 1) UNI=N®Z %= (N-1) *SIN (PP*Z) +EP*Z**N%COS (PP*Z)

IF (M.EQ.0) UP=SIN (PP*Z)

IF(M.GT.0) UP=2%*¥#SIN (PP*Z)

BR=B3+ALPHA®XL*Z

AREAR=AREA+ALDHA®(L*T3%2 »

YBAR= (2.*B1#T 1% (B3-B1,/2.) +B2*T2%BR+3R*23%T3,/2.) /AREAR
HR=(3.%*B1*B1%*B2%B2*T1-T4U*3R*B4 *%3) /12, /Y1

YOR=BR+HR~YBAR

IF (YOR.LZ.1.E-4.AND.YOR.GE.~1.2-4) YO&=0.0

ITOR=BR-YBAR

IIR= (T1#B1#®3%2, +B2#T2%#3+T3*3R==3+34%704%%3) /12,+2. T 1%B1% (YTOE~51
1/2.) *%2+B82%T2*YTOR* YTOR+BR*T3% (BR/2.~YTOR) #*2 +E4*TU* Y BAR*TBAR -
BXB= (TBAR® (TU*B4*%3/12, +B4*TU*YBAx*Y3AR) ~YTOR® (T2*B2%#3/12, +32¢T 2=
1TTOR*YTOR) ~B2*B2%B1%T 1% (YTOR/2.-B1/4.)~2,*B1% T 1% (YTOR**3=1,5%81=yT
20B*YTOR+B1*B1*YTOR~B1*B1*B1,/4.) +¥BAR®®U*T3 /4, ~YTOR=*4*T3 /4 ,) /LIR+2
3.*%Y0R -
BI=BR+EX '
BBXR=(YTL*YTL/YI/YI*BX*ALPHA*YBAR®B4%=TY-YBL*YBL/YI/YI*BY*ALPHA®YTO
1B*B2%T2-2,0% (YBL*BY/YI~B1/2.0) *YBL/YI*ALPHA* (YTO&-31/2.0) *B1%T1) /X
2IR

IF(BXR.LT.0.001.aND.3%R.GT.-0.001)81R=0.0

IF (BBXR.LT.0.001.AND.BBXR.GT.=0.001)BBIR=0,0

GMN=(1.0- (1.0+ARFA) *2) * (3YR*UMI*OUNI /XL+3BIR*UP*UNI) * (NDD* (=1.0))
RETURN

END
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FUNCTION HMN (2)

coxsox B1,T71,82,72,B3,73,84,T4,2,4LPHA, XL,48L,G,#IL,ARFA,4,¥,¥T
COMMON AREZA,GAM,NDD,YTL,YBL,EZX

PP=3.14159

IF (4.2Q.0) UNZ=-1, *PP*%2%SIN (PP*Z)

IF(N.EQ.0)UNZ==1,%PP*%3%SIN (PP*Z)

IF (M.2Q.1) UMZ=2.%EP*COS (PP*Z) -1, *PP*=2%ZxSIN (PF*2)

IF (N.EQ.1) UNZ=2.*PP%COS (PP*Z) -1, *Pp*=2*Z%xSIY (PP*Z)

IF(M.EQ.2) UMZ=2, *SIN (PP*Z) +4, ¥PP#2*COS (PP* ) - PP** 22142 #STY (PD*7)
IF (NoEQ.2) UNZ=2, *SIN (PP*Z) +4, *P2%Z#C0S (PP*Z) - PP**2% 2% 2%STN (PP*Z)
TF (4.GT.2) DMZ=H% (M~1) #2%% (4-2) #SIN (PP*Z) -PP** %% XU*S Iy (P2P*7) +2, *P
1P*U*Z%% (M= 1) £COS (PP*2)

IF (H.GT.2) UNZ=N% (N-1) ¥Z#% (§=-2) *SIN (PP#2) ~PP** 2% **§=SIY (PD*Z) +2, %P
1P*N*Z** (N- 1) £COS (PP*Z)

IF (N.EQ.0) UMI=PE*COS (PP*3Z)

IF (¥.2C.0) UNI=PP*COS (PP*Z)

IP (M.EQ.1) UAI=SIN (PP*Z) +PP*Z*CO0S (PP*Z)

IF (N.2Q.1) UNI=SIN (PP*Z) +PP*Z%COS (PP*Z)

IF (M.GT.1) UMI=H*Z*= (§=1) *SIN (PP*Z) +PP*Z*x%xM%COS (PP*3Z)

IF(N.GT.1) UNI=N#Z*= (N=1) *SIN (PP*2) +PP*Z**N*COS (PP*Z)
BR=B3+ALPHA*{L%Z

TJIR= (2. *B12T1%*%3+B2%T2¢*3+BRET34*3J+BUTy*%3) /3,

BY=BR+EX

WI=BX*BA*GAN

¥PSI=4,0%ALPHA®ALPHA®GAY .

W¥PSI=2.0%ALPHA*GAN*BY

HMN=G*TJR* UMI*UNI/XL+E*dI*U¥Z*UNZ/XL/YL/IL+E*W4PSI /XL /XL* (UNZ*ONT +
10MI*UNZ) +E*WPSI/XL*ONI*UMT

RETURN

END
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Cex
ca=
Cx=
Ce
oL 20
Cow
Csx
Cxee
Cx=
Ca=
Ca=
ce*
Cx=
Cx=
Cos
Cw®
CH%
Cx#
C#=
Cex
C#=
fod 23
C==
Cxx
Cx=
Ce=
Ce=
Cxx
C*=
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Cx%
C%
C¥%
Ch*
Cxk
Cx=
Ce%
Ca
C%
Cx=
Cx%
Ca®
fof 23
Cx=
C*%
C##
Co=
fof 20
C=%
C**
Ce=
CH%
C¥%x
Cxx
Cx*
Cx
Cx%
Cxx
C*#
CHx
C#=
Cxx
T
Cxx
CH%
CH=
Cxx
CHx

CARED ONE

FOLL EIGHTY CCLUHNS AVAILABLE FCR
IDENTIFICATION. INFOBMATION §OT

CASD TWO
IN 8F1C
B1 TO2?
T1 TOP
B2 TOP
T2 TIOP
B3 W®EB
T3 9EB

T4 BOT

CARD THEREE

IN 4P710 FOENAT,

ALPHA
AL
ZL

ZR

LAST CARD

"END OF

INPUT INSTAUCTIONS

FOGHAT,

FLANGZ
FLANGE
PLANGE
FLANGE
LZNGTH

LIP LINGTH
LIP THICKHZI3S
LENGTH
TAICKNZSS

THICKNESS
B4 BOTTOM FLANGE LENGT
TOM FLANGE TdICKNESS

TAPESR
LENGTH

ELATIVE STRZIS3S AT LIPI

ZL=+1.0
Z2.=-1,0

ZR=+¢1.0
ZR=-1.¢

DATA"

CC¥PIESSION IN

STAnrTING IN COLUMN 2.

LOAD AND GEO

ZNTZR BEAN CRCSS~-SECTION DATA.

ENTZ2 BEZAd GLOMETRY AND STRESS RATIOS.

END OF Tdz BZaK.
TCF FLANGE
COYPRZ5SION IN BCTTOA
RZLATIVE ST3zSs AT RIGHT
COMPRIS3ION IN
COMPRESSION IN BCTTUY FLANGE

TCP FLANGE

x%
%
* X
&%
-1 3
wx
"%
* X
Lk
%
&%
&%
E 3
&%
p-%-3
&
& X
* %
=%
%
2k
b3
3
® %
&
&%
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%
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o
* &
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c
c
c

aonn

noOon

aOnn

9999
500

501

101
25
107

EXTERNAL AHN,CHN,HBN,GNN

DIMENSION A(8,8),C(8,8),5(4),22(8,8),BETA(8), §K(128) ,X (8) ,ALFA(16)
COMHON B1,T1,BZ,T2,53,T3,BG,TQ,E,ALPHA,ZL,KHL,G,EIL,ARPA,H,N,YI

COHHON AKEA,GAH,NDD,YTL,Y3L,Z¥
COMPLEZ ALF2,2Z,X

DOUBLE PRECISION EINDOF,ENDO
DATA ENDOF/SHEND O/

DATA INPUT

EEAD(5,500) ENDO
FORMAT (1X,A5,7u4H

BRITE(6,501)

FORMAT (1H1)

IP (EWDOF.EQ.ENDO) STOP
WRITE(6,500) ENDO

READ (5,101)B1,T1,B2,72,B3,T3,B4,T4

FPORMAT (8F10. 4)

READ(5,107) ALPEA,YL,ZL,ZR
FORMAT (4F10.4)

£=30000.

G=11200.

NDD RECOEDS IF TOP FLANGE AT REFERENCED

NDD=-1
IF (ZL.LT.0.0) NDD=+1

IS IN TENSION.

ITZRN IS THE NUMBER OF TERMS INCLUDED IN THE DISPLACEMENT FUNCTION.

ITERN=4
HRITE (6, 14) ITERN

14 FORMAT (1HO, 'THE NUMBER OF TEBMS INCLUDED IN THE DISPLACEMTINT FPUNCT

1I0N IS',ZIu,' .7)

SECTION PROPERTY CALCULATIONS

BR=B3+ALPHA#*XL

AREA=B1*T1+BZ*T2+B3*T3+BU*T9+B1*T1

AREAR=AREA+ALPHA*ZIL*73
K=ITERN*2

TBAL=(2.*B1=T1=(B3-B1/2.) +B2*T2*B3+D3%33%73,/2.) /AREA
YBAR=(2.*B1*T1* (BR~B1/2.) +B2*¥T2*B&+BR*BR*T3/2.) /AKEAR

YTOL=B3-7BAL
YTOR=BR=-YBAR

XIL=(T1*B1**3*2.*B2*T2**3+T3*B3**3+Bu*TQ*‘B)/TZ.#Z.*T1*B1*(YTOL-31

YIR= (T1*B1%=%3%2, +B2*T2*%34T3%3R*x3+By=TlU*x%3) /12

D0L= (2. *B1¥T1#%34B2*T2%%3+B3*T3#%3+BU=T4%%3) /3,
TIR= (2.%B1*T1*%3+B2*T2**3+BR*T3I**3+BU*TY%%3) /3,

YTL=2.*%B1*T 1% (B2/2,) **2+T2%82%%3/12,

YBL=Tu*BY**3/12,
YI=YTL+YBL

HL= (3. *B1*B1*B2%B2*T1=-Tu*B3*B4*%3) /12, /YT
HR= (3, *B1*B1*B2#B2* T1~TU*BR*BY*=x3) /12, /Y1

YOL=B3+HL~YBAL
YOR=BR+HR-YBAR
EX=B2*B2*B1*B1+«T1/4./YTL
HIL=YTL*YBL* (EX+B3) *=2/YT
AIR=YTL*YBL* (EX+BR) **2/YI
EOL= (ZIL+YI) /AREA+YOL*%2
ROR= (XIR+.YI) /ARFEAR+YOR**2
SL=XIL/YIOL

SR=XIR/YTOR

SBL=XIL/YBAL -
SBR=XIR/YBAK
GAM=YTL*YBL/YI

92

1/2.) *#*2+B2*T2%YTOL*YTOL+B3*T3% (B3/2,-YTOL) **2+BU*Ty*YBAL*YBAL

«+2.*¥T1%B1% (YTOR=B1

1/2.) **2+B82*T2*YTOR*YTOS+BR*T3* (BR/2.~ YTOR) **¥2+Bu*Ty*YBAR*Y BAR



ann

aoononon

Oonn

00N

BXL=(YBAL*(TU*BQ**3/12 +B“*WU*Y3AL*Y3AL) YZOL *

AL= M T -Y7 (T2#32%=3 /12, +4B2%T2%
Iéigt*é?og%;53*82*31*T1*(YTOL/2.—B1/G.)-2.*51*11*(!?01**3—1 5%R1=*yT
2 TOL+ *YTOL- Y - AT *

S0 YTOL B1*31*31/0.)+¥5Au**u*-3/u.-qua**Q*T3/Q.)/IIL+2

EIR=(XBAF*(TU*BQ**3/12 +BUXTUXYBAR*YBAR) =YTOR * (T2 #]
= 4 . T ) =YTOR* (T2*E2%%3 /12, +B2*T2=
1YTO&*YTOR) - 4*52*51*T1*(YTOE/Z.-BT/U.)‘2.*51*T1*(YTOE**3-1.5*B1*§T

20R*YTOR+B1%B1%YTOR-B1#51% - -
3, #y02 BI*BTXB1/4.) +TBART*UXT3 /4. ~YTOR%*45T3/4.) /1T304 2

CALCULATION OF MOHMENT GRADIENT TERH

ARPA=ZR*SR/ZL/SL* (=1, 0)

IF (NDD.GT.0)ARFA=ZR*SBR/ZL/SBL*(~1.0)
IFP(YOL.LE. 1.E~4.AND.YOL.GE.-1.E~4) 3I0L=0.0
IF (YOE.LE. 1.E-4.AND.YOR.GE.~1.E~4) YOR=0.0

OOTPUT OF SECTION DATA

#gITE(6,113)8B1,T1,8B2,72,B3,73,B4,T4,XL,ALPHA
113 FORMAT (1H0,/' DIMENSIONS OF CR0SS SECTION'//
13%,'B1 =',F10.5,' IN',3%,'T1 =!,F10.5,!' IN'//
13%,'62 =',F10.5,' IN',3%,'T2 =',F10.5,' IN'//
13X,'83 =',F10.5,* IN',3%,'T3 =',F10.5,' IN'//
13X,'B4 =',F10.5,' IN',3X,'T4 =¢,710.5,' IN'/,
13%,*LENGTH=',F10.2,* IN.',//,34,'ALPEA = ',FB.U)
WRITE(¢,111) ROL,ROR,YOL,YOR,2L,2ZR
117 FOBMAT(/,' RESULTS',//,10%,'LEZFT END SECTION PROPERTIES',20%,'RIGH
2T END SECTION PROPERTIES',//,7%,'RO ='",F11.4,' IN.',22%Z,'RO =
2',F10.4," IN.',//,7Z,7YC = ',P10.4,*' IN.',22Z,'Y0 = ',F10.4,!
3IN.',///,7%,'RATIO OF STRESSES I5,LEFT TO RIGHT ',FB8.4,° :',PF8.4)
WRITE (6,103) AREA, AREAR,YBAL,YBAR,XIL, XIR
103 FOBMAT(//,7%Z,'ARER = ',F10.5,' IN*¥2',20%X,'AREA = ',F10.5,' IN%*%2¢

1,//+7%,"¥BAR = ',F10.5,' IN. FROM BOTTO8',10%,'YBAR = 'LFICS5, ! IN
2. FROM BOTTOAf,//,7X,'IX = ',F15.5, " In®=4',15%,'I% = ',P15.5,
3t IN®=y)
WRITE(6,73)YI,¥YI,dILl,¥IR,TJL,TJR,BiL,BI3

73 FCRMAT(//,7%Z,'IY = *,F15.5,"' IN*=*x4' ,15%,°'IY = ',FP15.5,' INx=y!
1.//,7%,'Cd = ' ,F15.5,' IN®==%6!',15%,'Cd = ', F15.5," IN==6',//,7%
2,'J = ',F15.5,"' IN®#4',15%,'J = 'V, F15.5,"' IN=x4',//,77,'B%
3 = ',F15.5," IN.',17X,'BZ = ',F15.5," IN.?)

CHANGE TO UNITS OF PEET

YI=YI/12.%==%y4
Ll=3iL/12.
ARZA=ARZA/12, ¥%2
GAH=GAM/12.%=4
B3=23/12.
T3=T3/12.

Bl4=B4 /12,
T4=Tu/12.
B2=B2/12.
T2=T2/12.
Bi=B81/12.
T1=T1/1%.
YIL=YTL/ (12.0*=4)
YBL=YBL/ (12.0%x%4)
EX=EX/12.

INITIALIZE HATRICES

C(I,J)=0.0
205 CONTINUE
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a0

aOan

aoOnnn

o000 aoaaa

0ono0

RN 8]

NTEGEATE BMATRIY ZLEMENTS
3 ¥ SUBROUTINE DCADIE USED

STrR=0.0

END=1.0

AERE=0.
RERR=0.001

DO 200 ZI=1,ITERN
DO 200 &=1,ITERN

4 (I,J)=DCADKE (ANN,STR,END,

u=

AZRR,RZZR,CRXOR,IEE)

A (I+ITERN, J*ITLRN) DCADEE(?EN,STR,;NJ AERR,EEIRE,ZRROR, IZR)
C(I+ITERN,J+ITEEN)=DCADRE GMN,S5IR,E8D,AERX, EZKE,ERRCE, IZR)

C(I,ITEEN*J)=DCADRL(CﬂV,axw,’ND,Aunn RZIRE,ZEROR,IER)
<00 CONTIWNUZ -

COMPLETE MATRICES USING SYMMETRY

DC 105 I=1,K

DO 105 J=1,K

A(I,I)=A(I,d)

C(J,I)=C(I,d)
105 CONTINUE

CALCOLATE EIGENVALUZS
I B ¥ SUBROUTINE EIGZF USED

Ia=K
IB=K
IZ=K
I1J0B=0
202 CALL ZIGZF (A,IA,C,IB,K,IJOB,ALFA, BEZTA,2Z,1Z,¥K,1ER)
CrR=10000000000.
TD=10000000,
DC 112 I=1,K
IF (ABS(BETA(I)).LE.1.02=-8) Z(I)=CR
IF (ABS(BET2(I)).8T.1.E-8) X (I)=ALFA(I) /BETA (I)
TT=REAL (X (1))
IF(TT.L2.0.0) TD=aBS(TT)

FIND MINIHUHM EIGENVALUE
ARITZ(6,3)X(I),ALPA(I),BETA (I)
3 FORMAT(1X,5F15.56)
112 CR=AMINI(TD,CR)

CALCULATE HMOMENT AT RIGHT END OF BEZAM
SIGN CONVENIION AS PRESENTED IN THESIS

OM=CR*NDD* (~-1.0)
CERM=0M*ARFA
OB=0H*ZL/ABS (2L)

OUTPUT FINRL RESULTS

312 ¥RITZ(6,300)0M,CRN
300 FORMAT(//,' CRITICAL MOMENT AT

GOTO999¢

§28 sTOP
ENT

94
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FUNCTION AMN(Z)

cosamos 81,71,32,72,53,73,34,74,8,ALPHA, XL;58L,G,dIL,ARFA, 4, Y, ¥

COMMON AREA,GAM,NDD,ITL,YBL,EX

PP=3.14159 A

IF (M.2Q.0) UNZ=~1, #PP*% &SI} (PP4Z)

IF (4.EQ. 1) UMZ=2.%PP*COS (PP*Z) -1, *PP**2%2=SIN (PE*7)

IF(4.2Q.2) UAZ=2. »SIN (P2*Z) +4, *PP*I%C03 (PP*Z) - PDx% % 7% 245TY (PP*Z)

IF (4.GT.2) UNZ=H* (B~ 1) #2%x (4=2) *SIN (PP*Z) ~PDP* = 2%Z#*xM*SIN (2D*7) +2, 4P
1P*U%Z %% (M~ 1) *COS (PP*Z)

IF (N.ZQ.J) UNZ==-1, *PP**2%SIN (PP *32)

IF (N.EQ. 1) UNZ=2,*PP*COS (PP*2) -1, *PP*% 252 #SIN (PP*Z)

IF (N.2Q.2) UNZ=2,*SIN (PP*Z) +4.*PP*Z*COS (PO¥Z) ~ PDx#* 2% Z# 5 2+5TY (PP=7)

IF(N.GT.2) UNZ=N* (N-1) *Z*= (N=2) $SIN (PP*Z) -PP¥*2%Z#5N=5 [N (PD*7) +2, *p
1PEN%Z*% (N=-1) *COS (P2*7)

AMN=UMZ*UNZ*E*YI /{L¥%3

RETURN

END

FUNCTION C¥N (Z)

cosmoy 31,T1,B2,72,33,T3,B4,T4,5,ALPHA, 1, 4L ,G,4IL,ARFA,d, N, T1

COMMON AREZA,GAM,N¥DD,YTL,7BL,ZZ

PP=3.14139

IF (H.EQ.0) UMZ=~1, *DP==2%SIN (PP*7)

IF(M.EQ. 1) UNZ=2.%PP*COS (PP*Z) =1, *P2%% 2% 245N (PL*Z)

IF(M.EQ.2) UHZ=2.*SIN (PP¥Z) +4, ¥PP*7#COS (2P*2) - PD=x %1% % 2«STN (PP*2)

LF (M.GT.2) UHZ=4% (M- 1) #2%% (¥-2) *SIN (PP#Z) ~PP*% 2*Z*%u%S I (PDXT) +2, 4P
1P=M*Z %% (4= 1) ¥COS (PD*7Z)

IF (N.EQ.0) UNI=SIN (PP*2)

IF(N.GT.0) UNI=Z#=N=SIN (PP*Z)

GMN=ONI*UNMZ* (1.0- (1.0+ARPA) #2) SIL*NDD

RETURN

END

FUNCTION GIN(Z)

cos#os B1,71,82,12,83,T3,B4,T4,E,ALPHA, XL, %ML ,G,4IL,ARFA, 4, N, ¢

COBMON ARZA,GAM,NDD,YTL,YBL,EX

PP=3.14159

IF (M.EQ.0) UNI=PP*COS (PP*2Z)

IP(N.EQ.0) UNI=PP%COS (PP*Z)

IF (M. EQ. 1) USI=SIN (PP*7) +PP*Z%C0OS (PP*7)

IF (H.EQ.1) UNI=SIN (PP*2) +PP*Z*COS (PP*2Z)

IF(E.GT.1) UBI=8%Z** (M-1) *SIN (PP*Z) +PP*2%*u=COS (PP*Z)

IF(N.GT. 1) UNI=N®Z %% (N~ 1) *SIN (PDP*Z) +PP*Z**N%COS (EP*2)

IF (4.EQ.0Q) UP=SIN (PP*Z)

IF(M.GT.0) UP=2**H*SIN (PP*Z)

BR=B3+ALPHAXXL*Z

AREAR=AREA+ALPHA®*L*T3%2 :

YBAR= (2.*B1#T 1% (BR-B1/2.) +B2*T2%BR+SR*B2*T3/2.) /ARZAR

HR= (3.*%B1*B1*B2%B2*T1-T4*3R*B4%*3) /12, /Y1

YOR=BR+HR-YBAR

IF (YOR.LZ.1.E-4.AND.YOR.GE.~1. E~4) YOR=0.0

{TOR=BR~YBAR

XIR= (T1*B1%=3%2, +B2#T2%*3+TI*5R=*=3+BY*T4%%3) /12, +2, 5T 1% 1% (YT0R-B1
1/2.)#%2+382%T2*YTOR* YTOR+BR*T3* (BR/2.~YTOR) #*2 +EU*TU*TB3AR*YBAR

BXB= (7TBAR® (TU#BU*%3 /12, +BU4*TU*YBAa*TBAR) ~YTOR™ (T2*B2%%3,/12. +82%T2x
1YTOR*YTOR) ~B2*B2%B1*T 1% (YTOR/2.~B1/4.) =2.%B1% T1% (YTOR**3~1,5%51%YT
20R*YTOR+B1*B1*YT0R-B1#¥B1#B1/4,) +YBAR®®4*T3 /4, ~YTOR=*4 T3 /4 ) /TTR+2
3.*YOR g

BI=BR+EX ‘

BBXR= (YTL*YTL,/YI/YI*BX*ALPHA*YBAR®BU%T4~YBL*YBL/YI/YT#3X*ALDHAXTTO
1R*B2*T2-2.0* (YBL*BL/YI-B1/2.0) *{BL/YI*ALPHA* (¥TOs-31/2.0) *B1%T1) /X
2IR

IF(BIR.LT.0.001.AND.3%R.GT.-0.001)8%I3=0.0C

IF (BBXR.LT.0.007.AND,.B3BIR.GT.~0.001)BBIR=0.,0

GMN=(1.0- (1.0+ARFA) *2) * (BXR*UMI*UNI/XL+3BXR*UP*UNI) * (NDD* (-1.90))

RETURN

END
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FUNCTION HHMN (Z)

CO¥NMON B1,T1,B2,T2,B3,T3,BU,TQ,E,AL?HA,XL,XHL,G,%IL,ARFA,H,N,YI
COMMON ARZA,GAM,NDD,YTL,YSL,ZX

PP=3,14159

IF(H.EQ.O)UHZ=-1.*PP**2*SIN(PP*Z)

I?(N.EQ.O)UNZ=-1.*PP**2*SIN(PP*E
IP(M.EQ.1)UHZ=2.*EP*COS(PP*Z)-T.*PP**Z*Z*SIN(PP*Z)
IP(N.EQ.1)UNZ=2.*EP*COS(PP*Z)-1.*??**2*Z*SIN(PP*Z)
IP(H.EQ.Z)UHZ=2.*SIH(PP*Z)+4.*PP*Z*COS(P?*Z)*PP**Z*Z**Z*SIH(PP*Z)
IP(N‘EQ.Z)UNZ=2.”SIN(PP*Z)+4.*PP*Z*COS(PP*Z)-PP**Z*Z*'Z*SIN(PP*Z)
IE(M.GT.Z)UHZ=H*(H-1)*Z**(3-2)*SIN(PP*Z)-PP**Z*Z**H*SIN(PP*Z)#2.*?
1P*Y*kZ** (M- 1) £COS (PP*Z)
IF(H,GT.Z)UNZ=N*(N-1)*Z**(N-2)*SIN(PP*Z)-PP**Z*Z**N*SIN(PP*Z)*Z.*P
1P#N®Z %% (N~ 1) *COS (PP*2Z)

IF (H.EQ.0) UNI=PP*COS (PP*Z)

IT (N.2C.3) UNI=PP*COS (PP*Z)

IF(H.EQ.1)UHI=SIN(PP*Z)+PP*Z*COS(PP*Z)
IF(N.EQ.1)UNI=SIN(PP*Z)+PP*Z*COS(PP*Z)
IP(M.GT.T)UMI=H*Z**(H-1)*SIH(PP*Z)+?P*Z**H*COS(PP*Z)
IF(N.GT.1)UNI=H*Z**(N-1)*SIN(?P*Z)+PP*Z**N*COS(PP*Z)
BR=B3+ALPHA*X{L*Z

TJR=(2.*81*T1**3+BZ*T2**3+BH*T3**3+BQ*T4**3)/3.

BI=BR+EX

WI=BX*BY*GaAHM

¥PSI=4,)*ALPHA®ALPHA®GAY -

WHPSI=2.0%ALPHA*GAY*BY
HHN=G*TJR*UHI*UNI/XL+E*HI*UEZ*UNZ/IL/IL/3L+E*WSPSI/IL/KL*(UHZ*UNI+
1UMI*UNZ) +E*WPSI/XL*UNI*UMI

RETURN

END
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C
C
c

oOnoa

non

aOnn

9999
500

501

101
25
107

14

EXTERNAL ABN,CHN, HBN,GMN

DIMENSION A(B,B),C(B,B),S(U),ZZ(B,B),BETA(S),HK(128),X(B),ALFA(16)
COMHON B1,T1,B2,T2,83,T3,BM,TQ,Z,ALPHA,ZL,XHL,G,EIL,ARPA,H,R,YI

COHHON AKEA,GAHM,NDD,YTL,Y3L,Z¥
COMPLEZ ALFA,2Z,%

DOUBLE PRECISION EZNDOF,ENDO
DATA ENDCF/SHEND O/

DATA INPUT

BEEAD (5,500) ENDO
FORMAT (1%,A5,74H

HRITE (6,501)

FORMAT (1H1)

IP (EKDOF.EQ.EKDO) STOP
WRITE(6,500) ENDO

EEAD (5,101)B1,T1,B2,72,B3,T3,B84, T4

FORMAT (8F10. 4)
READ(5,107) ALPEA, YL, ZL,2R
FORMAT (4F10. 4)

£=30000.

6=11200.

NDD RECOEDS IF TOP FLANGE AT REFERENCED

NDD==-1
IF(Z2L.LT.0.0) NDD=+1

EZND

IS IN TENSION,

ITERN IS THE NUMBER OF TERMS INCLUDED IN THE DISPLACEMENT FUNCTION.

ITERN=4
HRITZ (6, 14) ITERN

FORXAT (150, 'THE KUMBER OF TERMS INCLUDED IN
1ION IS',Zu,' ")

SZCTION PROPERTY CALCULATIONS

BR=B3+ALPHA*XL

AREA=B1*T1+BZ*T2+83*T3+BB*T9#B1*T1

AREAR=AREA+ALPHA*XL=®T3
K=ITERN*2

THE

DISPLACEMENT FUNCT

IBAL= (c.*B1*T1%(E3-B1/2.) +B2*T2%B3+DB3*33*T3,/2.) /AREA
YBAE=(2.*B1*T1* (BB-B1/2.) +B2*T2*BE+BR*BR*T3/2.) /AKEAR

YTOL=B3~-7YB2Ll
YTOR=BR-YBAR

IIL=(T1*B1**3*2.*52*T2**3+T3*33**3+BH*TQ‘*B)/12.*2.*T1*B1*(YTOL-31

XIR= (T1*B1**3%2, +B2#T2%%234T3%3R=*3+ By *TU*%3) /12

TJL= (2, *B1¥T1%%34B2%T2%%3+B3*T3%%3+By*T04%%3) /3,
TIR= (2. %B1*T1%%3+B2*T2#%3+BR*T3*=3+B4xT4*%3) /3,

YTL=2.*B1*T 1% (B2/2.) **2+T72*%B2%%3/12,

YBL=Tu*B4**3/12,
TI=YTL+YBL

HL= (3.*%B1*B1*B2*B2=T1~-T4*B3*BY**3) /12. /YT
fiR= (3. *B1*B1*¥B2*B2* T1-TU*BR*BY=*=3) /12, /Y1

YOL=B3+HL~YBAL
YOR=BR+HR~YBAR
EZ=B2*B2*B1*B1*T1/4.,/YTL
WIL=YTL*YBL* (EX+B3) *=2/Y]
AIB=YTL*YBL* (EX+BR) *32/Y7
EOL= (XIL+YI) /AREA+TOL*%*2
ROR= (XIR+7YI) /AREAR+YOR*%2
SL=4{IL/YTOL

SR=XIR/YTOR

SBL=XIL/YBAL -
SBR=XIR/YBAK
GAM=YIL*YBL,/YI
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1/2.) **2+4B2%T2%YTOL*YTOL+B3*T 3% (B3/2.~7T0L) ** 2 +BU*Ty*YBAL*YRAL

«+2,*T1%B1* (YTOR-B1

1/2.) *=2+B82*T2*YTOR*YTOR+BR*T3% (BR/2.-YTORE) **2+B4*Ta*YBAR*YBAR
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BXL= (YBAL* (TU*B4*%3/12, +BUSTUXY5AL*Y3AL) -7 TOL * (-

XLs . T ~YTOL* (T2*82%=3/12, +B2#T2x
1553;*5?02%;§§*B2*E1*T1*(YTOL/2.-31/“.)-2.*51*I1*(¥:OL**3-1 5#B1=yT
2 TOL + *YTOL- BAI iy TOL* =, .

ZoL=ye YTOL a1*51*31/a.;+yDAu*xu*-3/u.-y$gb*favra/u.)/xIL+2
BI2= (YBAR® (TU™BU*%3/12 +BUXTUSTBARFYBAR) ~YT0R* (72 )

= 4 . T ) ~YTOR* (T2#B24%3/12, +B2*T)%
TYTOE*YTOR) - L*BZ*B1*T1*(YTOH/2.-BI/U.)-2.*51*?1*(YTOE**§-1.5*B1*€T

2OR*YTOR+B1%B1*YTOR-E % N .
3. *Yon B B1 51*81/“‘)*YBA“**”*-3/“-‘YTOR**U*TB/Q.)/119¢2

CALCULATION OF MOMENT GRADIEKT TERH
ARPA=ZR*SR/ZL/SL* (~1.0)
IF (NDD.GT.0)ARFA=ZR*SBR/ZL/SBL* (-1.0)
IP(YOL.LE. 1,E~4,AND.YOL.GE. =1.E~4) I0L=0.0
IF{{0K.LE.1,E~4.AND.YOR.GE.~1.E-4) YOR=0.0
OUTPUT OF SECTION DATA

#RITE(6,113)B1,T1,B2,72,B3,73,B4, T4 ,XL,ALPHA
113 FORMAT (1HO,/' DIMENSIONS OF CRGSS SECTION'//

13%,'B1T =',F10.5,' IN',3X,'T1 =',F1C.5,' IN'//

13%,'82 =',F10.5,' IN',3X,'T2 =',P10.5,' IN'//

13%,'83 =',F10.5,' IN',3%,'T3 =',F10.5,' IN'//
]

13X,'B4 =',F10.5,' IN',3%,'T4 =¢,F10.5,' IN'/,
13%,'LERGTH=',F10.2," IN.',//,34,"ALPHA = ',FB.4)
WRITE(6,111)ROL,ROR,YOL,YOR,2L,2R
111 FORMAT(/,' RESULTS',//,10X,'LEZFT EZND SEC™ION PEOPERTIIES',20%,'RIGH
2T END SECTION PROPERTIES',//,7%,'RO =',F11.4," IN.',622%,"'RO =
2',F10.4,' IN.',//,7%,'Y0C = ', F10.4,% IN.',22X,'Y0. = ',P10.4,"
3IN.',///,7%,'RATIO OF STRESSES I5,LEFT TO RIGHT ',F8.4,! :',FB.4)
RRITE (6,703) AREA, AREAR,YBAL,YBAR, XIL, XIR
1C3 FORMAT(//,7%,'ARER = ',F10.5,' IN*¥%27,20%,'AREA = ',F10.5,' IN®%2¢
1,//,7%,'Y8AR = ',P10.5,' IN. PROM BOTTOS',10%,'YBAR = ',F1C.5,' IN

2. FROM BOTTOM',//,7X,'IX = ',P15.5, ' IN®=4',15%,'IZ = ',P15.5,
3t IN*%UY)
¥RITE(6,73)YI,¥YI,dIL,WIR, TJL,TJR,BiL, BI3
73 FORMAT(//,7%,'IY = 4,P15.5," IN®==4' 15%,'IY = '",F15.5,"' INx=y?
1.//.,7%,'CHd = ',F15.5,' IN=®==p'!,15%,'CH = ',F15.5,' IN=xx6',//,7X%
2,'J = ',F15.5,"' IN==U4',615%,'J = ', F15.5," IN==#4',//,77,°B%
3 = *,F15.5,* IN.',17X,'BZ = ',F15.5," IN.!')

CHANGE TO UNITS OF FEET

=E& 12%=D
=3%]2, ®%)
IL=HIL/12.%%%
YI=YI/12.%%y4
XL=XL/12.
AREA=AREA/12, #%2
GAH=GAM/12.%*4
B3=g3/12.
T3=T3/12.

BU4=B4 /12,
Tu=T4,/12.
B2=Bz2/12.
T2=T2/12.
B1=81/12.
T1=T1/12.
YIL=YTL/ (12.0%*4)
YBL=YBL/ (12.0%%4)
EX=EI/12.

E
G
a

INITIALIZE MATRICES
DO 205 I=1,K
DO 205 J=1,K
0

205 CONTINUE
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NTZGEATE MATKIZ EZLZMENTS
3 ¥ SUBROUTINE DCADRE USED

STR=0.0

END=1.0

AERE=0.

RERR=0.001

DO 200 I=1,ITERN

DO 200 3=1,ITERN

n=I-1

N=J-1
A(I,J)=DCADEE(AHN,STR.END,ABR.,REEE,EBROB,IEE)

A(I*ITEEN,J*IIERN)=DCADEE(HﬁN,STR,END,AERR,EERB,ZEROR,
C(I*ITERN,J+ITEEN)=DCADRE(GﬂN,SER,ESD,AERE,EERE,ERRDE,

C(I,ITERN+J)=DCADRE(CMN,STE,END,AERE,RBRS,EEROR,IEB)
CONTINUZE .

COMPLETE BATRICES USING SYMMETRY

DO 105 I=1,K
DO 105 J=1,K
A(J,I)=A(I,J)
C(J,I)y=C(1,J)
CONTINUE

CALCOLATE ETIGENVALUZS
I B ¥ SUBROUTINE EIGZF USED

Ia=K

IB=K

IZ=K

IJ0B=0

CaALL EIGZF (,IA,C,IB,K,IJOB,ALFA,BZTA,2Z,1Z,dK,IER)
CR=10000000000.

TD=10000000.

DO 112 I=1,K

IF (ABS(BETA(I)).LE.1.02-8) Z(I)=CR

IF (ABS(BET2 (I)).G3T.1.E-8) % (I)=ALFA(I) /BETA (I)
TT=REAL (X (I))

IF(TT.LZ.0.0) TD=ABS(TT)

FPIND MINIHUHM EIGENVALUE
#_ITZ(6,3)X(I),ALFA(TI),BETA (I)
FORMAT (1X,5F15.8)
CR=AMIN1(TD,CR)

CALCULATE HMOMENT AT RIGHT EIND OF BZAM
SIGN CONVENTIOX AS PRESENTED IN THESZIS

OM=CR*NDD* (~1.0)
CRM=0OM*ARFA
OM=0K=*ZL/ABS (ZL)

OUTPUT FINAL RESULTS

WRITZ(6,300)0H,CRHN

FORMAT (//,' CRITICAL MOMENT AT LEFT ENP EQUALS',F15.5,!' KEIP~PFT.',/
1/,' CRITICAL MOMENT AT RIGHT ZIND EQUALS',FP14.5,°! KIP-FT.")

GOTO9999
STOP
ENT

94



FUNCTION AHN(2)

cOodMON BT,T1,32,T2,53,T3,BQ,T&,3,ALPEA,XL;ZEL,G,RIL,ARFR,H,ﬁ,YI
COMHON AREA,GAM,NDD,ITL,YBL,EX

PP=3.14159 .

IP(H.ZQ.O)UHZ=‘1.*PP**2*SIN(PP*Z)
IF(H.EQ.1)UHZ=2.*PP*COS(PP*Z)-1.*9?**2*Z*SIN(PF*Z)
IF(H.ZQ.Z)UHZ=2.”SIN(PP*Z)+4.*PP*Z*COS(P?*Z)'PP**Z*Z*“2*SIN(PP*Z)
IP(N.GT.Z)UMZ=H*(E-1)*Z**(H’Z)*SIN(PP*Z)-?P**Z*Z**H*SZN(?P*Z)*2.*?
1p*¥=zZ %% (4~ 1) *COS (PP*Z) '

IF(N.EQ.J)UNZ=-1.*PP**2*SIN(PP*Z)
IF(N-EQ.1)UNZ=2.*PP*COS(PP*Z)-1.*??**2*Z*SIN(PP*Z)
IF(N.EQ.Z)UNZ=2.*SIN(PP*Z)+“.*PP*Z*COS(PP*Z)-PP**2*Z**2*SIN(PP*Z)
IF(N.GT.Z)UNZ=N*(N—1)*Z**(N-Z)*SIN(PP*Z)°PP**2*Z**N*SIN(PP*Z)+2.*P
TP®N*Z %% (N~1) *COS (PP*7)

ANN=UAZ*®UNZ*E*YI /XL#=%3

RETIORN

END

FUNCTION CHN (2)

COHMMON 31,T1,E2,T2,B3,TB,B“,TQ,B,ALPHA,ZL,K&L,G,HIL,AE?A,S,N,YI
COMMON ARZA,GAM,NDD,YTL,IBL,ZZ

PP=3.14 159

IF(M.EQ.O)UHZ=-1.*PP**Z*SIN(PP*Z)
IF(H.EQ.1)UHZ=2.*PP*COS(PP*Z)-1.*?2**2*5“5:&(??*2)
IF(M.EQ.Z)UHZ=2.*SIN(PP*Z)+Q.*P?*Z*COS(?P*Z)’?P**Z*Z**Z“SIH(PP*Z)
IF(ﬁ.GI.Z)UHZ=H*(H—1)*Z**(H-Z)*SIH(PP*Z)-PP**Z*Z**&*S:N(PP*Z)+2.*P
1P*M*Z %= (M~ 1) *COS (PP*7)

IF (N.EQ.0) UNI=SIN (PP=2)

IF (N.GT.0) UNI=Z*=N=SIN (PP*Z)

CAN=ONT*UMZ* (1.0~ (1.0+ARTA) #2) /XL*NDD

BRETURY

END

FUNCTION GNN(2Z)

COMHON 81,11,82,72,83,73,84,T4,8,ALPHA, IL,%M4L,G,4IL,A5FA,H, N, ¥I
COHHON ARZA,GAM,NDD,YTL,YBL,EX

PP=3.14159

IF (M.EQ.C) UBI=PP%COS (PP*Z)

IF(N.EQ.O) UNI=PP%®COS (PP*Z)

IF(M.EQ. 1) UBI=SIN (PP*2Z) +PP*2*C0O3 (PP *Z)

IF (N.EQ.1) UNI=SIN (PP*Z) +PP*Z*COS (PP*Z)

IP(B.GT.1) UBI=Y*Z** (N~1) *SIN (PP*Z) +PP*2**M=*COS (PP*2)

IF(N.GT. 1) UNI=N®Z%* (N~ 1) *SIN (PP*Z) +EP*Z**N*C0OS (PP*Z)

IP (M.EQ.0Q) UP=SIN (PP*Z)

IF(M.GT.0) UP=2*%%«SIN (PP*Z)

BR=B3+ALPHAXXL*Z

AREAR=AREA+ALPHA®={L*T3%% :

YBAR=(2.%*B1*T 1% (B3-B1/2.) +B2*T2*BR+3R*BE3*T3/2.) /AREAR

HB= (3.*B1*B1*B2*B2*T1-TU*3R*B4»=3) /12./YI

YOR=BR+HR-YBAKR

IF (YOR.LZ. 1.E~4.AND.YOR.GE.~1.2-4) YOR=0.0

I{TOR=BR-YBAR

IIR= (T1*B1%=3%2, +82*T2*=3+T3*3E%*3+84*TU%*3) /12.+2,*T1%B 1% (YTOE~31
1/2.) *%2+82%T2*ITOR*YTOR+BR*T3* (BR/2.-YTOR) **2 +E4*Tu4*T3AR*YBAR -
BXR= (TBAR® (TU*BU*%¥3 /12, +BU*TU*YBAL*YBAR) ~YTOR* (T2*B2%%3,/12,+82%72%
1ZTOR*YTOR) -B2*B2*B1%T 1% (YTOR/2.~B1/4.) -2.*B1* T1% (YTOR*%*3~1, 58127
ZOE*YTOR*BT*BT*YTOR-B1*81*81/“.)+YBAE**Q*T3/Q.-YTOE**“*T3/U.)/IIR+2
3. *YOR .
BX=BR+EX ’
BBXR=(YTL*YTL/YI/YI*BX*ALPHA*YBAR¥BU*T4-YBL*YBL/YI/YI#8Y*ALPHAXYTO
1R*BZ‘T2-2.0*(YBL*BE/YI-B1/2.0)*!BL/YI*ALPHA*(YTO&-31/2.0)*B1*T1)/1
2IR

I7(BXB.LT.0.001.A¥D.3%R.GT.~-0.001)3LR=9.0

iIF (BBXR.1LT.0.007.aN¥D.B8BXR.GT.~0.001)BBiR=0.0
GHN=(1.0-(1.0*ARFA)*Z)*(5X3*UHI*UNI/XL+BBKR*UP*UNI)*(NDD*(-1.0))
RETURN

END
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FUNCTION HMN (Z)

cossow 81,11,82,T72,B3,73,34,T4,E,ALPHA, XL, 44L,G,#IL,ARFA,4,N,¥T
COMMON ARZA,GAM,NDD,YTL,YBL,ZX

PP=3.14159

IF (4.EQ.0) UNZ==1, *PP*%2%SIN (PP*Z)

IP (N.EQ.0) UNZ==1, #PP*=2%SIN (PP*Z)

1P (B.2Q.1) UMZ=2.*EP*COS (PP*2) -1, *PP==2% 2xSIY (PE*2)

IP(N.EQ.1) UNZ=2,%PP*COS (PP*2) -1, *PP*=2*Z*SIY (PDP*Z)

IF (M.EQ.2) UMZ=2, *SIN (PP¥2) +4. *PP*2*COS (PP*]) -PP**2%x %2 +STY (PD*2)
IF (N.EQ.2) UNZ=2.*SIN (PP*Z) +4 . *PO%L*COS (PD*Z) -PP*=2% 2% *2%SIN (PP*Z)
IE (4.3T.2) OHZ=H% (4=1) #2%% (4-2) £SIN (PP*2) ~PP*%2%Z*sU STy (2D%7) +2., %P
1P*4*Z%% (N-1) £COS (PP*72)

IF (§.GT.2) UNZ=N* (N=1) 3Z#% (N=-2) *SIN (PP*7) PP 2=Z#xNxSTY (PD*Z) +2, #P
1P*N*Z %% (N-1) *COS (PP*Z)

IF (M.EQ.0) UMI=PP*COS (PP*3Z)

IF (N.2C.C) UNI=PP=COS (PP*Z)

IF(4.EQ.1) UMI=SIN (PP*2) +PP*Z*C0S (PP *7)

IF (N.2Q.1) UNI=SIN (PP*Z) +PP*7%COS (PP*Z)

IF(M.GT.1) UNI=H*Z = (M=1) *SI) (PP*2) +PP*Z*%M=COS (PP*2)

IF(N.GT.1) UNI=N#Z#*=x (N=1) #SIN (PP*2) +PP*Z*=N%COS (PP*32)
BR=B3+ALPHASXL*Z

TJR= (2. *B1#T1*%3+B2%T2##3 +BR4T3*%3+BU xTy*%3) /3,

BX=BR+EX

WI=BX#*BX*GAHM

YPSI=4.0%ALPHA®ALPHA®GAYN -

W¥PSI=2.0%ALPRA*GAN*BY

HMN=G*TJR* UMI*ONI/XL+E*dI*U4Z*UNZ/XL/XL/TL+E%4%PST/XL/XL* (UNZ#UNT+
10MI*UNZ) +2%WPSI /XT*ONI*UMT

RETURN

END
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EXAMPLE USING A WICE-FLANCEC BEAM wiITF A CHANNEL CAF

THE NUMBER OF TEFMS INCLUDED IN THE CISPLACEMENT FUNCTIGN IS 4 o

DIMENSICNS OF CRCSS SECTICA

81 = 166800 IN Tl = 0243CC IN
B2 = 5.65720 IN T2 = 0,804CC IN
B3 = 7s79C00 IN T2 0= Ce230C0 IN
Bs = 5.,25000 IN Ta = Q0+308C0 IN
LENGT b= 60sC0 INos
ALPHA = 0.0
RESULTS
LEFT ZND SECTICN PRCOPERTIES RIGHT ENC SECTICN FRCPERTIES
RO = 1€s37632 INo RC o= 16,2752 IN.
Yo = 1.7224 IN. YC = 17324 1IN
RATIC CF STRESSES ISSLEFT TC RIGFT 10000 ¢ 1.,000090
AREA = 7930407 IN#¥*2 AREA = 70404C7 IN%%
YEAR = E,01728 IN. FRCM BCTTCM™ YBAF = 3.01723 INe FRCM BCTTCM
Ix = 7853081 INxx4 IX = TELSEQEL INZF24
Iy = 204471088 IN¥%a Iy = 2Ca47128 IN%*24
cw = 2&6-70523 IN*%€ Cw = 20€.,70523 IN=*%6
J = 0eZ0G01 IN%xx%qg J = Ce36901 IN*24
8X = 532759 INs BX = Se22765 IN.
CRITICAL MCMENT AT LEFT ENLC EQUALS 955.,75830 KIP~FT,
CRITICAL MCMENT AT RPIGHT ENC EQUALS ~9SELTEE3C KIF=FT,
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APPENDIX B

Calculation of Section Properties



2b.t + b,t 3 + b, t + b,t

I = 171 272 373 474
3
3
b t.b
. _ 2.2 22
Iy,top - 2b1tl(2 )+ 12
3
t4b4

Iy,bottom T 12

Iy B Iy,top + Iy,bottom
2. 2 3
s Sbl b2 tl - t4b3b4 )
Yo 7 P3 12 1 T
y
bzzblztl
e = Zif—————-= location of shear center of channel
y,top
I I (e + b )2
_ "y,top "v,bottom 3
I —
W I
y
3 3
t,b t.b
_1 = 474 2 272 — 2
fx 7T, | bz T bt Yy ) Ty O F bty v )
- 2 3
y b 3b.y b
2 t 1 — 3 17t 2— 1
= by byt e - ) - 2y Oy L i
— 4 — 4
y, t vy, ot
b "3 t '3
+ i A 1+ 2y0
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APPENDIX C

Data and Results of Comparisons
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7= 1 1 272 373 Loy
3
3
b t.b
_ 242 22
Iy,top - 2bltl(Z )+ 12
3
_ Gby

Iy,bottom T 12

Iy - Iy,top + Iy,bottom
2, 2 3
s 3bl b2 tl - t4b3b4 =
Y9 7 P3 12 1 Ty,
y
bzzblztl
e =1 = location of shear center of channel
y,top
2
B Iy,top Iy,bottom (e + b3)
I =
W I
y
3 3
t b t.b
_1l = 474 =2 - 7272 -2
fx 7T, N R VATIS (DR P e v S PLI Y S
— 2
y 3b.y
2, t 1 —3_ "1t 2=
- bbbyt G- ) - by Gy 7ty
-4 — 4
y, t -
+ b4 3 t 3] + 2y
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APPENDIX B

CALCULATION OF SECTION PROPERTIES

Section Properties required are calculated using the equations
which follow. All calculations are made with reference to the line

element figures below.

. b2 y
o A X 1e )
- i | -
t2 tl4~ jEl - | =
b ol ¢ 4
3 Tt c .
> |
ty b
P
b,
AREA = 2b,t; + b,t, + bty + b, t,
b bj
_}; ) Zbltl(bB - —2—) + b2t2b3 + b3t3——5
b AREA
Je T P37 N
3 3 3 3
.. 2t.b, 7 + byt,” + b " + bt o bl)2
X 12 I R 2
+ bty + b.t (Pi-?)2+btx?2
Prto¥ 373V T Y vov'b
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Table 3.4

Section Data for Determining Cb

Small End | Flange | Comp. Flange | Tension Flange | Taper .
Depth | Width | Thickness Thickness a Unbraced length, in
in in in in radians | 60 |120 {180} 240
9.5 6.0 0.25 0.25 0.00 X X X X
0.01 X X X X
0.05 X X
. 0.10 X
9.5 6.0 0.25 0.1875 0.00 X X X X
0.01 X X X X
0.05 X X
0.10 X
9.5 6.0 0.1875 0.25 0.00 X X X X
0.01 X X X X
0.05 X X
0.10 X
17.25 10.0 0.375 0.375 0.00 X X X X
0.01 X X 4 X X
0.05 X X X X
0.10 X X
17.375 10.0 0.375 0.25 0.00 X X X
' 0.01 X X X X
0.05 X X X X
0.10 X X
17.375 10.0 0.25 0.375 0.00 X X X X
0.01 X X X X
0.05 X X X X
0.10 X X
)
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Table 3.1b

Unsymmetrical Section Data

for
Determining C,

=]
o
X b1 x4 b4 B S P baoba b bd 4 b b bd B2 SRR
E<T P
pu)
W o
g o | w b4bd bE b b4 b4 b b 2 be b b b4 bd bd bd bd b4 Bd D4 bt bd b4
]
u lo
wu L] L ] ER A R L D b4 b DG bl M DA b b4 D4 R ]
o
H -
DG | b e nq pd b b be ba b b3 2 BB b4 B4 54 b b b B B4 B4 B b v e ba BG4 b4 b4 b4 B4
=)
12}
H B lodno 94nodnogQdino 99 OHINOOHND OO HINOO AINO
¢ , 9| 500+ cooo0co0~00QOA OO0 S0 Ao 00d OO HOO O A
. . T eesESssT N T A A R e
S M CO00 O00DOOOO0OO0O0O OO SO0 0O00 OO0 OOO
o0
[~~~
o
]
o i o
g 42 b >4 4 ]
~ DN
o0
]
- gl
— >4 > > >
o Ofrd
=]
(2]
=0
L > >4 > b4 b4 B
(32}
2 > e bS]
S~
- >4
[V =]
80 - [0
g |-
[
— 0N
(YR
a
o gt
on A~ B ke > >4 Mo >
H O
o ol
]
oo
—
S~
[aa]
=}
wi |9 o <} o oo o o oo o
dZ e | n ) V-1 © 0 o o~ 0 o ~
— -t o~ — i
Fw
9
o
5] w o o o o
Hefl g « © <
- @
o O - -~ o~
=]
w

123



Table 3.la

Symmetrical Section Data

for
Determining Cy
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TABLE 2.3

"C" Values for Prismatic
Doubly Symmetric Members

Culver and

Section Stress Ratio Chi(18) Preg(10) Proposed

4 x .25 +1.0 1.00 1.00 1.00
+0.5 1.32 1.32 1.32

I 6 x .1875 0.0 1.83 1.85 1.85
i x .05 -0.5 2.48 2.60 2.61
Leagth = 60" -1.0 2.49 2.74 2.75

6 x .3125 +1.0 1.00 1.00 1.00
40.5 1.32 1.32 1.32

111 14 x .400 0.0 1.79 1.84 1.84
6 x .3125 -0.5 2.29 2.57 2.58
-1.0 2.19 2.72 2.72

Length = 180"
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START

~

/Input Cross section,
/ and Beam Geometry !

Input Stress Ratio -
/

Calculate Section
Properties at Both Ends i
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ICalculate Moment Gradient !

; Output Echo
" and Results

/of Calculations
! .

Initialize
| Matrices

. DCADRE
Matrix Element.
Integration

i EIGZF |
| Determine .
i Eigenvalues;
! !

' Find Minimum
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Output f
/ Results !
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Fig. 2.13 Macro-Flowchart for Computer Program

128



y

Fig. 2.11 Applied Minor Axis Moment

e

ML(l + v)

u cos u'

Mx(z)u

Fig. 2.12 External Applied Torque (plan view)
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where vy is the end moment ratio

R

Yy = — (2.37)

"

Referring to Fig. 2.11, and assuming that ¢ is small, so that sind may

be approximated as ¢, the y-axis moment can be written as
= - . — _.z.
My(Z) M _(2)¢ Mol - (v + DY) (2.38)

With reference to Fig. 2.12, it can be seen that external torque is
supplied from two sorces: (1) The reaction, indicated in Fig. 2.10,
produces a torsional component as it acts through the out-of-plane dis-
placement, u. (2) This displacement also generates a torsional compo-
nent from the major axis bending. Thus, the total external torque,
again assuming small angles so that cosu' may be approximated as 1.0,
may be written as

To= M- (1B D (2.39)

and if Iy is assumed constant for a beam tapered in depth only, the
complete equations become:

In-plane Bending

M (L= (1+ 7)) = -EL_(2)v" (2.40)
Out of Plane Bending
M (L - (L + D) = BT u" (2.41)
Torsion
1+

M- (@ 0D+ e = 63(2)5 - (BT (2)6™) - (L ()0 )

+ EL_,(2)9" + BT (2)0' + M (1 - (1 +1)%) [, (25" + gx(z>¢} g2.42)
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(p + dp) (¢ + do)

(D il do)Shear Center
£(s +dg) xS

W

A

Fiber Before Twist

dz Fiber after twist

Fig. 2.8 Displacement of Longitudinal Fiber
During Twisting (after Trahair, (21))

[a N
N
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o
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e Ct———— 5

~Fig. 2.9 Generalized Mono-Symmetric Cross-Section

N .
=
‘——-——?

I

/ D
M = v

' 1
ML(l + v)
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2

Fig. 2.10 Applied Major Axis Loading Condition
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Fig. 2.7a The Wagner Effect - Major Axis Bending of a Singly Symmetric
Beam ’

Shear Center
Axis

Fig. 2.7b The Wagner Effect - Shear Center Twist Producing a
Disturbing Torque as Flange Force Vectors Are Rotated
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Ibeft " IftIfb "

-d -Ed
[ — N B e} e e -— .._____d .
dz atht abdfb) dz[ I dzu I zu *
y y
I_.d 2 I_d 2
fbz d ftz d
tt z d 2.19
7= S5(a, )+ S5(a, )] (2.19)
y dz y dz

Noting that the u" terms cancel, expanding and neglecting second order

derivatives of "a" as small, this term becomes

-Ed . 2 2

-d = n no_
az M T M) = gl T 0" AT 0

ft b £fb

1] 1 1]
2(atIftat + abebab}é ] (2.20)

A similar sequence of substitutions into the second term of equation
2.18 results in the following equation for the flange warping component

of torsion,
T, = ZQ{EI o™ ZQ(EI ¢') + EI, u" 4+ EI_o" +
f dz w dz wy Ux Wy

E1w¢‘ (2.21)

where the additional beam properties are defined as

2 2
= 2
Iw atIft + abeb (2.22a)
- 1 ' 9

Iww Z(atIftat + abebab) (2.22b)
= ! oAt

: IWX atIft abeb (2.22¢)

I = 4[a)’1. + (%1, ] (2.224)

t ft b fb )

When a monosymmetric thin-walled beam loaded in its plane of
symmetry is twisted, as in the case of lateral torsional buckling,

normal stresses present will exert an additional disturbing torque.
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¥ jaax
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Fig. 2.5 Inclination of Flange Moments

@ Shear Center

K Centroid

V4

Fig. 2.6 Displacement and Rotation of a Mono-Symmetric Cross Section
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Fig. 2.3 Out-of-Plane Deflection Coupled with Twisting
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Fig. 2.4 Relationship of Flange Shears and Flange Moments
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Fig 2.1 Centroidal Coordinate System
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Fig, 2.2 Tapered Beam Geometry
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